Publication: Scattering due to geometry: case of a spinless particle moving on an asymptotically flat embedded surface
Files
Program
KU-Authors
KU Authors
Co-Authors
Ahmady, Mehrdad
Advisor
Publication Date
2018
Language
English
Type
Journal Article
Journal Title
Journal ISSN
Volume Title
Abstract
A nonrelativistic quantum mechanical particle moving freely on a curved surface feels the effect of the nontrivial geometry of the surface through the kinetic part of the Hamiltonian, which is proportional to the Laplace-Beltrami operator, and a geometric potential, which is a linear combination of the mean and Gaussian curvatures of the surface. The coefficients of these terms cannot be uniquely determined by general principles of quantum mechanics but enter the calculation of various physical quantities. We examine their contribution to the geometric scattering of a scalar particle moving on an asymptotically flat embedded surface. In particular, having in mind the possibility of an experimental realization of the geometric scattering in a low-density electron gas formed on a bumped surface, we determine the scattering amplitude for arbitrary choices of the curvature coefficients for a surface with global or local cylindrical symmetry. We also examine the effect of perturbations that violate this symmetry and consider surfaces involving bumps that form a lattice.
Description
Source:
Physical Review A
Publisher:
American Physical Society (APS)
Keywords:
Subject
Optics, Physics, atomic, molecular and chemical