Publication: Advancing the understanding of the structure-activity-durability relation of 2D MoS2 for the hydrogen evolution reaction
Program
KU-Authors
KU Authors
Co-Authors
Advisor
Publication Date
Language
English
Type
Journal Article
Journal Title
Journal ISSN
Volume Title
Abstract
It has been decades since electrochemical water splitting was proposed as a promising strategy for renewable hydrogen production. Transition-metal dichalcogenides offer cheap, earth-abundant catalyst candidates for the hydrogen evolution reaction (HER). Among those, molybdenum disulfide (MoS2) has been the subject of a vast number of studies, where different approaches such as manipulating the type and number of layers, or density of the intrinsic active sites, and engineering compositional phase and structure have been employed to enhance the electrochemical activity. Herein, we show the HER activities of twodimensional 1T-and 1H-MoS2 mixed phases with respect to the pure 1H-MoS2 scale with the 1T phase. The creation of S vacancies in 1H-MoS2 enhances HER activities. Further enhancement in the activity is achieved by N doping induced by N2 plasma exposure owing to the formation of a metallic 1T phase and S vacancies. The spectroelectrochemical Raman spectroscopy and ex-situ X-ray photoelectron spectroscopy investigations reveal a gradual phase conversion induced by H adsorption during electrochemical tests. The 1T to 1H phase transformation results in a significant loss in HER activity.
Description
Source:
Acs Catalysis
Publisher:
Amer Chemical Soc
Keywords:
Subject
Chemistry, physical and theoretical