Publication:
Modeling the brain connectivity for pattern analysis

Placeholder

Organizational Units

Program

KU-Authors

KU Authors

Co-Authors

Onal, Itir
Aksan, Emre
Velioğlu, Burak
Fırat, Orhan
Ozay, Mete
Vural, Fatoş T. Yarman

Advisor

Publication Date

2014

Language

English

Type

Conference proceeding

Journal Title

Journal ISSN

Volume Title

Abstract

An information theoretic approach is proposed to estimate the degree of connectivity for each voxel with its neighboring voxels. The neighborhood system is defined by spatial and functional connectivity metrics. Then, a local mesh of variable size is formed around each voxel using spatial or functional neighborhood. The mesh arc weights, called Mesh Arc Descriptors (MAD), are estimated by a linear regression model fitted to the voxel intensity values of the functional Magnetic Resonance Images (fMRI). Finally, the error term of the linear regression equation is used to estimate the mesh size for a voxel by optimizing Akaike's information Criterion, Bayesian Information Criterion and Rissanen's Minimum Description Length. fMRI measurements are obtained during a memory encoding and retrieval experiment performed on a subject who is exposed to the stimuli from 10 semantic categories. For each sample, a k-NN classifier is trained using the Mesh Arc Descriptors (MAD) having the variable mesh sizes. The classification performances reflect that the suggested variable-size Mesh Arc Descriptors represents the mental states better than the classical multi-voxel pattern representation. Moreover, we observe that the degree of connectivities in the brain greatly varies for each voxel.

Description

Source:

2014 22nd International Conference On Pattern Recognition (Icpr)

Publisher:

IEEE Computer Soc

Keywords:

Subject

Computer science, Artificial intelligence, Engineering, Electrical and electronic engineering

Citation

Endorsement

Review

Supplemented By

Referenced By

Copy Rights Note

0

Views

0

Downloads

View PlumX Details