Publication:
Modeling the brain connectivity for pattern analysis

dc.contributor.coauthorOnal, Itir
dc.contributor.coauthorAksan, Emre
dc.contributor.coauthorVelioğlu, Burak
dc.contributor.coauthorFırat, Orhan
dc.contributor.coauthorOzay, Mete
dc.contributor.coauthorVural, Fatoş T. Yarman
dc.contributor.departmentDepartment of Psychology
dc.contributor.kuauthorÖztekin, İlke
dc.contributor.kuprofileFaculty Member
dc.contributor.otherDepartment of Psychology
dc.contributor.schoolcollegeinstituteCollege of Social Sciences and Humanities
dc.contributor.yokidN/A
dc.date.accessioned2024-11-09T23:29:19Z
dc.date.issued2014
dc.description.abstractAn information theoretic approach is proposed to estimate the degree of connectivity for each voxel with its neighboring voxels. The neighborhood system is defined by spatial and functional connectivity metrics. Then, a local mesh of variable size is formed around each voxel using spatial or functional neighborhood. The mesh arc weights, called Mesh Arc Descriptors (MAD), are estimated by a linear regression model fitted to the voxel intensity values of the functional Magnetic Resonance Images (fMRI). Finally, the error term of the linear regression equation is used to estimate the mesh size for a voxel by optimizing Akaike's information Criterion, Bayesian Information Criterion and Rissanen's Minimum Description Length. fMRI measurements are obtained during a memory encoding and retrieval experiment performed on a subject who is exposed to the stimuli from 10 semantic categories. For each sample, a k-NN classifier is trained using the Mesh Arc Descriptors (MAD) having the variable mesh sizes. The classification performances reflect that the suggested variable-size Mesh Arc Descriptors represents the mental states better than the classical multi-voxel pattern representation. Moreover, we observe that the degree of connectivities in the brain greatly varies for each voxel.
dc.description.indexedbyWoS
dc.description.indexedbyScopus
dc.description.openaccessNO
dc.description.publisherscopeInternational
dc.identifier.doi10.1109/ICPR.2014.575
dc.identifier.isbn978-1-4799-5208-3
dc.identifier.issn1051-4651
dc.identifier.quartileN/A
dc.identifier.scopus2-s2.0-84919941160
dc.identifier.urihttp://dx.doi.org/10.1109/ICPR.2014.575
dc.identifier.urihttps://hdl.handle.net/20.500.14288/12044
dc.identifier.wos359818003079
dc.keywordsN/A
dc.languageEnglish
dc.publisherIEEE Computer Soc
dc.source2014 22nd International Conference On Pattern Recognition (Icpr)
dc.subjectComputer science
dc.subjectArtificial intelligence
dc.subjectEngineering
dc.subjectElectrical and electronic engineering
dc.titleModeling the brain connectivity for pattern analysis
dc.typeConference proceeding
dspace.entity.typePublication
local.contributor.authoridN/A
local.contributor.kuauthorÖztekin, İlke
relation.isOrgUnitOfPublicationd5fc0361-3a0a-4b96-bf2e-5cd6b2b0b08c
relation.isOrgUnitOfPublication.latestForDiscoveryd5fc0361-3a0a-4b96-bf2e-5cd6b2b0b08c

Files