Publication:
Structure-property relationships and melt rheology of segmented, non-chain extended polyureas: effect of soft segment molecular weight

Placeholder

Organizational Units

Program

KU Authors

Co-Authors

Das, Sudipto
Inci, Bora
Tezgel, Ozgul
Beyer, Frederick L.
Wilkes, Garth L.

Advisor

Publication Date

2007

Language

English

Type

Journal Article

Journal Title

Journal ISSN

Volume Title

Abstract

Novel, segmented non-chain extended polyureas were synthesized. Soft segments (SS) were based on poly(tetramethylene glycol) (PTMO) (average molecular weight 1000 or 2000 g/mol) and hard segments (HS) were based on a single molecule of a diisocyanate, which was either 1,6-hexamethylene diisocyanate (HDI), 1,4-phenylene diisocyanate (pPDI) or 1,4-trans-cyclohexyl diisocyanate (CHDI). An increase in the SS molecular weight was found to lead to an increased formation of SS crystallites below 0 degrees C, which increased the low temperature modulus. Both 1K and 2K PTMO-based polyureas showed a microphase separated morphology, where the HS formed thread-like, crystalline structures that were dispersed in the continuous SS matrix. Upon deformation, the HS were found to breakdown into distinctly smaller threads, which oriented along the direction of the strain; this effect was found to be partially reversible and time dependent. Both the 1K and 2K polyureas based on HDI HS were found to be thermally stable and potentially melt-processible.

Description

Source:

Polymer

Publisher:

Elsevier Sci Ltd

Keywords:

Subject

Polymers, Polymerization

Citation

Endorsement

Review

Supplemented By

Referenced By

Copy Rights Note

0

Views

0

Downloads

View PlumX Details