Publication:
Distribution of averages of ramanujan sums

Placeholder

Departments

School / College / Institute

Program

KU-Authors

KU Authors

Co-Authors

Publication Date

Language

Embargo Status

Journal Title

Journal ISSN

Volume Title

Alternative Title

Abstract

The average value of a certain normalization of Ramanujan sums is determined in terms of Bernoulli numbers and odd values of the Riemann zeta function. The distribution of values and limiting behavior of such a normalization are then studied along subsets of Beurling type integers with positive density and sequences of moduli with constraints on the number of distinct prime factors.

Source

Publisher

Springer

Subject

Mathematics

Citation

Has Part

Source

Ramanujan Journal

Book Series Title

Edition

DOI

10.1007/s11139-012-9424-4

item.page.datauri

Link

Rights

Copyrights Note

Endorsement

Review

Supplemented By

Referenced By

1

Views

0

Downloads

View PlumX Details