Publication:
Ransac-based training data selection for emotion recognition from spontaneous speech

Placeholder

Organizational Units

Program

KU Authors

Co-Authors

Erdem, Çiǧdem Eroǧlu
Erdem, A. Tanju

Advisor

Publication Date

2010

Language

English

Type

Conference proceeding

Journal Title

Journal ISSN

Volume Title

Abstract

Training datasets containing spontaneous emotional expressions are often imperfect due the ambiguities and difficulties of labeling such data by human observers. In this paper, we present a Random Sampling Consensus (RANSAC) based training approach for the problem of emotion recognition from spontaneous speech recordings. Our motivation is to insert a data cleaning process to the training phase of the Hidden Markov Models (HMMs) for the purpose of removing some suspicious instances of labels that may exist in the training dataset. Our experiments using HMMs with various number of states and Gaussian mixtures per state indicate that utilization of RANSAC in the training phase provides an improvement of up to 2.84% in the unweighted recall rates on the test set. This improvement in the accuracy of the classifier is shown to be statistically significant using McNemar's test.

Description

Source:

AFFINE'10 - Proceedings of the 3rd ACM Workshop on Affective Interaction in Natural Environments, Co-located with ACM Multimedia 2010

Publisher:

ACM

Keywords:

Subject

Computer engineering

Citation

Endorsement

Review

Supplemented By

Referenced By

Copy Rights Note

0

Views

0

Downloads

View PlumX Details