Publication:
Ransac-based training data selection for emotion recognition from spontaneous speech

dc.contributor.coauthorErdem, Çiǧdem Eroǧlu
dc.contributor.coauthorErdem, A. Tanju
dc.contributor.departmentDepartment of Computer Engineering
dc.contributor.departmentN/A
dc.contributor.kuauthorErzin, Engin
dc.contributor.kuauthorBozkurt, Elif
dc.contributor.kuprofileFaculty Member
dc.contributor.kuprofilePhD Student
dc.contributor.otherDepartment of Computer Engineering
dc.contributor.schoolcollegeinstituteCollege of Engineering
dc.contributor.schoolcollegeinstituteGraduate School of Sciences and Engineering
dc.contributor.yokid34503
dc.contributor.yokidN/A
dc.date.accessioned2024-11-09T23:59:36Z
dc.date.issued2010
dc.description.abstractTraining datasets containing spontaneous emotional expressions are often imperfect due the ambiguities and difficulties of labeling such data by human observers. In this paper, we present a Random Sampling Consensus (RANSAC) based training approach for the problem of emotion recognition from spontaneous speech recordings. Our motivation is to insert a data cleaning process to the training phase of the Hidden Markov Models (HMMs) for the purpose of removing some suspicious instances of labels that may exist in the training dataset. Our experiments using HMMs with various number of states and Gaussian mixtures per state indicate that utilization of RANSAC in the training phase provides an improvement of up to 2.84% in the unweighted recall rates on the test set. This improvement in the accuracy of the classifier is shown to be statistically significant using McNemar's test.
dc.description.indexedbyScopus
dc.description.openaccessYES
dc.description.publisherscopeInternational
dc.description.sponsorshipACM SIGMM
dc.identifier.doi10.1145/1877826.1877831
dc.identifier.isbn9781-4503-0170-1
dc.identifier.linkhttps://www.scopus.com/inward/record.uri?eid=2-s2.0-78650482962anddoi=10.1145%2f1877826.1877831andpartnerID=40andmd5=bc7c4feb68e6cadb81baa101c24cc31e
dc.identifier.quartileN/A
dc.identifier.scopus2-s2.0-78650482962
dc.identifier.urihttp://dx.doi.org/10.1145/1877826.1877831
dc.identifier.urihttps://hdl.handle.net/20.500.14288/15667
dc.keywordsAffect recognition
dc.keywordsData cleaning
dc.keywordsData pruning
dc.keywordsEmotional speech classification
dc.keywordsRANSAC Affect recognition
dc.keywordsData cleaning
dc.keywordsData pruning
dc.keywordsEmotional speech
dc.keywordsRANSAC
dc.keywordsCleaning
dc.keywordsData reduction
dc.keywordsHidden Markov models
dc.keywordsSpeech analysis
dc.keywordsSpeech recognition
dc.languageEnglish
dc.publisherACM
dc.sourceAFFINE'10 - Proceedings of the 3rd ACM Workshop on Affective Interaction in Natural Environments, Co-located with ACM Multimedia 2010
dc.subjectComputer engineering
dc.titleRansac-based training data selection for emotion recognition from spontaneous speech
dc.typeConference proceeding
dspace.entity.typePublication
local.contributor.authorid0000-0002-2715-2368
local.contributor.authoridN/A
local.contributor.kuauthorErzin, Engin
local.contributor.kuauthorBozkurt, Elif
relation.isOrgUnitOfPublication89352e43-bf09-4ef4-82f6-6f9d0174ebae
relation.isOrgUnitOfPublication.latestForDiscovery89352e43-bf09-4ef4-82f6-6f9d0174ebae

Files