Publication:
Nanoerythrosome-functionalized biohybrid microswimmers

dc.contributor.coauthorBuss, Nicole
dc.contributor.coauthorYasa, Oncay
dc.contributor.coauthorAlapan, Yunus
dc.contributor.coauthorAkolpoğlu, Mükrime Birgül
dc.contributor.departmentDepartment of Mechanical Engineering
dc.contributor.departmentSchool of Medicine
dc.contributor.kuauthorSitti, Metin
dc.contributor.schoolcollegeinstituteCollege of Engineering
dc.contributor.schoolcollegeinstituteSCHOOL OF MEDICINE
dc.date.accessioned2024-11-09T12:11:18Z
dc.date.issued2020
dc.description.abstractBiohybrid microswimmers, which are realized through the integration of motile microscopic organisms with artificial cargo carriers, have a significant potential to revolutionize autonomous targeted cargo delivery applications in medicine. Nonetheless, there are many open challenges, such as motility performance and immunogenicity of the biological segment of the microswimmers, which should be overcome before their successful transition to the clinic. Here, we present the design and characterization of a biohybrid microswimmer, which is composed of a genetically engineered peritrichously flagellated Escherichia coli species integrated with red blood cell-derived nanoliposomes, also known as nanoerythrosomes. Initially, we demonstrated nanoerythrosome fabrication using the cell extrusion technique and characterization of their size and functional cell membrane proteins with dynamic light scattering and flow cytometry analyses, respectively. Then, we showed the construction of biohybrid microswimmers through the conjugation of streptavidin-modified bacteria with biotin-modified nanoerythrosomes by using non-covalent streptavidin interaction. Finally, we investigated the motility performance of the nanoerythrosome-functionalized biohybrid microswimmers and compared it with the free-swimming bacteria. The microswimmer design approach presented here could lead to the fabrication of personalized biohybrid microswimmers from patients' own cells with high fabrication efficiencies and motility performances.
dc.description.fulltextYES
dc.description.indexedbyWOS
dc.description.issue2
dc.description.openaccessYES
dc.description.publisherscopeInternational
dc.description.sponsoredbyTubitakEuN/A
dc.description.sponsorshipAlexander von Humboldt Foundation
dc.description.sponsorshipMax Planck Society Foundation
dc.description.versionPublisher version
dc.description.volume4
dc.identifier.doi10.1063/1.5130670
dc.identifier.embargoNO
dc.identifier.filenameinventorynoIR02158
dc.identifier.issn2473-2877
dc.identifier.quartileQ1
dc.identifier.scopus2-s2.0-85091014096
dc.identifier.urihttps://doi.org/10.1063/1.5130670
dc.identifier.wos525243800001
dc.keywordsBacteria driven microswimmers
dc.keywordsErythrocyte ghosts
dc.keywordsDrug
dc.keywordsDelivery
dc.keywordsMicroorganisms
dc.keywordsMembrane
dc.keywordsCarrier
dc.keywordsMarker
dc.keywordsSelf
dc.language.isoeng
dc.publisherAmerican Institute of Physics (AIP) Publishing
dc.relation.grantnoNA
dc.relation.ispartofAPL Bioengineering
dc.relation.urihttp://cdm21054.contentdm.oclc.org/cdm/ref/collection/IR/id/8835
dc.subjectEngineering, biomedical
dc.titleNanoerythrosome-functionalized biohybrid microswimmers
dc.typeJournal Article
dspace.entity.typePublication
local.contributor.kuauthorSitti, Metin
local.publication.orgunit1SCHOOL OF MEDICINE
local.publication.orgunit1College of Engineering
local.publication.orgunit2Department of Mechanical Engineering
local.publication.orgunit2School of Medicine
relation.isOrgUnitOfPublicationba2836f3-206d-4724-918c-f598f0086a36
relation.isOrgUnitOfPublicationd02929e1-2a70-44f0-ae17-7819f587bedd
relation.isOrgUnitOfPublication.latestForDiscoveryba2836f3-206d-4724-918c-f598f0086a36
relation.isParentOrgUnitOfPublication8e756b23-2d4a-4ce8-b1b3-62c794a8c164
relation.isParentOrgUnitOfPublication17f2dc8e-6e54-4fa8-b5e0-d6415123a93e
relation.isParentOrgUnitOfPublication.latestForDiscovery8e756b23-2d4a-4ce8-b1b3-62c794a8c164

Files

Original bundle

Now showing 1 - 1 of 1
Thumbnail Image
Name:
8835.pdf
Size:
2.26 MB
Format:
Adobe Portable Document Format