Publication:
Derivative interpolating subspace frameworks for nonlinear eigenvalue problems

dc.contributor.coauthorVoigt, Matthias
dc.contributor.departmentDepartment of Mathematics
dc.contributor.departmentGraduate School of Sciences and Engineering
dc.contributor.kuauthorAziz, Rifqi
dc.contributor.kuauthorMengi, Emre
dc.contributor.schoolcollegeinstituteCollege of Sciences
dc.contributor.schoolcollegeinstituteGRADUATE SCHOOL OF SCIENCES AND ENGINEERING
dc.date.accessioned2024-11-09T11:57:06Z
dc.date.issued2022
dc.description.abstractWe first consider the problem of approximating a few eigenvalues of a rational matrix-valued function closest to a prescribed target. It is assumed that the proper rational part of the rational matrix-valued function is expressed in the transfer function form H(s) = C(sI- A)B-1, where the middle factor is large, whereas the number of rows of C and the number of columns of B are equal and small. We propose a subspace framework that performs two-sided or one-sided projections on the state-space representation of H(.), commonly employed in model reduction and giving rise to a reduced transfer function. At every iteration, the projection subspaces are expanded to attain Hermite interpolation conditions at the eigenvalues of the reduced transfer function closest to the target, which in turn leads to a new reduced transfer function. We prove in theory that, when a sequence of eigenvalues of the reduced transfer functions converges to an eigenvalue of the full problem, it converges at least at a quadratic rate. In the second part, we extend the proposed framework to locate the eigenvalues of a general square large-scale nonlinear meromorphic matrix-valued function T(.), where we exploit a representation R(s) = C(s)A(s)B-1(s) - D(s) defined in terms of the block components of T(.). The numerical experiments illustrate that the proposed framework is reliable in locating a few eigenvalues closest to the target point, and that, with respect to runtime, it is competitive to established methods for nonlinear eigenvalue problems.
dc.description.fulltextYES
dc.description.indexedbyWOS
dc.description.indexedbyScopus
dc.description.issue4
dc.description.openaccessYES
dc.description.publisherscopeInternational
dc.description.sponsoredbyTubitakEuN/A
dc.description.sponsorshipN/A
dc.description.versionAuthor's final manuscript
dc.description.volume44
dc.identifier.doi10.1137/20M1348455
dc.identifier.embargoNO
dc.identifier.filenameinventorynoIR03952
dc.identifier.issn1064-8275
dc.identifier.quartileN/A
dc.identifier.scopus2-s2.0-85135212937
dc.identifier.urihttps://doi.org/10.1137/20M1348455
dc.identifier.wos863909200002
dc.keywordsNonlinear eigenvalue problems
dc.keywordsLarge scale
dc.keywordsSubspace projections
dc.keywordsHermite interpolation
dc.keywordsQuadratic convergence
dc.keywordsRational eigenvalue problems
dc.language.isoeng
dc.publisherSociety for Industrial and Applied Mathematics (SIAM)
dc.relation.grantnoNA
dc.relation.ispartofSIAM Journal on Scientific Computing
dc.relation.urihttp://cdm21054.contentdm.oclc.org/cdm/ref/collection/IR/id/10819
dc.subjectMathematics
dc.titleDerivative interpolating subspace frameworks for nonlinear eigenvalue problems
dc.typeJournal Article
dspace.entity.typePublication
local.contributor.kuauthorMengi, Emre
local.contributor.kuauthorAziz, Rifqi
local.publication.orgunit1College of Sciences
local.publication.orgunit1GRADUATE SCHOOL OF SCIENCES AND ENGINEERING
local.publication.orgunit2Department of Mathematics
local.publication.orgunit2Graduate School of Sciences and Engineering
relation.isOrgUnitOfPublication2159b841-6c2d-4f54-b1d4-b6ba86edfdbe
relation.isOrgUnitOfPublication3fc31c89-e803-4eb1-af6b-6258bc42c3d8
relation.isOrgUnitOfPublication.latestForDiscovery2159b841-6c2d-4f54-b1d4-b6ba86edfdbe
relation.isParentOrgUnitOfPublicationaf0395b0-7219-4165-a909-7016fa30932d
relation.isParentOrgUnitOfPublication434c9663-2b11-4e66-9399-c863e2ebae43
relation.isParentOrgUnitOfPublication.latestForDiscoveryaf0395b0-7219-4165-a909-7016fa30932d

Files

Original bundle

Now showing 1 - 1 of 1
Thumbnail Image
Name:
10819.pdf
Size:
789 KB
Format:
Adobe Portable Document Format