Publication: A class of banach algebras whose duals have the schur property
| dc.contributor.coauthor | Mustafayev, Heybetkulu | |
| dc.contributor.department | Department of Mathematics | |
| dc.contributor.kuauthor | Ülger, Ali | |
| dc.contributor.schoolcollegeinstitute | College of Sciences | |
| dc.date.accessioned | 2024-11-09T23:04:25Z | |
| dc.date.issued | 1999 | |
| dc.description.abstract | Call a commutative Banach algebra A a γ-algebra if it contains a bounded group Λ such that aco(Λ) contains a multiple of the unit ball of A. In this paper, first by exhibiting several concrete examples, we show that the class of γ-algebras is quite rich. Then, for a γ-algebra A, we prove that A* has the Schur property iff the Gelfand spectrum Σ of A is scattered iff A* = ap(A) iff A* = Span(Σ). | |
| dc.description.indexedby | Scopus | |
| dc.description.indexedby | TR Dizin | |
| dc.description.issue | 3 | |
| dc.description.openaccess | YES | |
| dc.description.publisherscope | International | |
| dc.description.sponsoredbyTubitakEu | N/A | |
| dc.description.volume | 23 | |
| dc.identifier.issn | 1300-0098 | |
| dc.identifier.link | https://www.scopus.com/inward/record.uri?eid=2-s2.0-0141846327andpartnerID=40andmd5=9fcb7921dbd25f79b09856310088f160 | |
| dc.identifier.quartile | Q2 | |
| dc.identifier.scopus | 2-s2.0-0141846327 | |
| dc.identifier.uri | https://hdl.handle.net/20.500.14288/8638 | |
| dc.keywords | Almost periodic functionals | |
| dc.keywords | Schur property | |
| dc.keywords | Segal algebras | |
| dc.language.iso | eng | |
| dc.publisher | Scientific and Technical research Council of Turkey - TUBITAK/Türkiye Bilimsel ve Teknik Araştırma Kurumu | |
| dc.relation.ispartof | Turkish Journal of Mathematics | |
| dc.subject | Mathematics | |
| dc.title | A class of banach algebras whose duals have the schur property | |
| dc.type | Journal Article | |
| dspace.entity.type | Publication | |
| local.contributor.kuauthor | Ülger, Ali | |
| local.publication.orgunit1 | College of Sciences | |
| local.publication.orgunit2 | Department of Mathematics | |
| relation.isOrgUnitOfPublication | 2159b841-6c2d-4f54-b1d4-b6ba86edfdbe | |
| relation.isOrgUnitOfPublication.latestForDiscovery | 2159b841-6c2d-4f54-b1d4-b6ba86edfdbe | |
| relation.isParentOrgUnitOfPublication | af0395b0-7219-4165-a909-7016fa30932d | |
| relation.isParentOrgUnitOfPublication.latestForDiscovery | af0395b0-7219-4165-a909-7016fa30932d |
