Publication: Mice are near optimal timers
Program
KU-Authors
KU Authors
Co-Authors
Advisor
Publication Date
2022
Language
English
Type
Journal Article
Journal Title
Journal ISSN
Volume Title
Abstract
Many conventional interval timing tasks do not contain asymmetric cost (loss) functions and thereby favor high temporal accuracy. On the other hand, asymmetric cost functions that differentially penalize/reinforce the early or late responses result in adaptive biases (shift) in timed responses due to timing uncertainty. Consequently, optimal performance in these tasks entails the normative parametrization of adaptive timing biases by the level of timing uncertainty. Differential reinforcement of response duration (DRRD) is one of these tasks that require mice to actively respond (e.g., continuously depressing a lever) for a minimum amount of time to be reinforced. The active production of a time interval by mice in DRRD differentiates this task from the differential reinforcement of low rates of responding (DRL) task as a passive waiting task that was used in earlier studies to investigate the optimality of adaptive biases in timing behavior. We tested 21 Th-Cre male mice (9 weeks old) in a DRRD task with a minimum requirement of 2 s. Mean response durations were positively biased (longer than the minimum requirement), and the extent of bias was predicted by the level of endogenous timing uncertainty. Mice nearly maximized the reward rate in this task. These results contribute to the accumulating evidence supporting optimal temporal risk assessment in non-human animals.
Description
Source:
Timing and Time Perception
Publisher:
Brill
Keywords:
Subject
Neurosciences, Neurology, Psychology