Publication:
The causal news corpus: annotating causal relations in event sentences from news

Thumbnail Image

Departments

School / College / Institute

Program

KU Authors

Co-Authors

Tan, Fiona Anting
Caselli, Tommaso
Oostdijk, Nelleke
Nomoto, Tadashi
Hettiarachchi, Hansi
Ameer, Iqra
Uca, Onur
Liza, Farhana Ferdousi
Hu, Tiancheng

Publication Date

Language

Embargo Status

Journal Title

Journal ISSN

Volume Title

Alternative Title

Abstract

Despite the importanceofunderstandingcausality, corporaaddressingcausal relationsare limited. There isadiscrepancy betweenexistingannotationguidelinesofeventcausalityandconventionalcausalitycorporathat focusmoreonlinguistics. Manyguidelinesrestrict themselvestoincludeonlyexplicit relationsorclause-basedarguments. Therefore,weproposean annotationschemaforeventcausalitythataddressestheseconcerns.Weannotated3,559eventsentencesfromprotestevent newswithlabelsonwhether itcontainscausal relationsornot. OurcorpusisknownastheCausalNewsCorpus(CNC).A neuralnetworkbuiltuponastate-of-the-artpre-trainedlanguagemodelperformedwellwith81.20%F1scoreontest set, and83.46%in5-foldscross-validation. CNCistransferableacrosstwoexternalcorpora:CausalTimeBank(CTB)andPenn DiscourseTreebank(PDTB).Leveragingeachoftheseexternaldatasetsfortraining,weachieveduptoapproximately64%F1 ontheCNCtestsetwithoutadditionalfine-tuning. CNCalsoservedasaneffectivetrainingandpre-trainingdataset for the twoexternalcorpora. Lastly,wedemonstratethedifficultyofourtasktothelaymaninacrowd-sourcedannotationexercise. Ourannotatedcorpusispubliclyavailable,providingavaluableresourceforcausaltextminingresearchers.

Source

Publisher

EUROPEAN LANGUAGE RESOURCES ASSOC-ELRA

Subject

Computer Science, Interdisciplinary applications, Linguistics

Citation

Has Part

Source

LREC 2022: Thirteen International Conference on Language Resources and Evaluation

Book Series Title

Edition

DOI

item.page.datauri

Link

Rights

Copyrights Note

Endorsement

Review

Supplemented By

Referenced By

2

Views

6

Downloads