Publication: The causal news corpus: annotating causal relations in event sentences from news
dc.contributor.coauthor | Tan, Fiona Anting | |
dc.contributor.coauthor | Caselli, Tommaso | |
dc.contributor.coauthor | Oostdijk, Nelleke | |
dc.contributor.coauthor | Nomoto, Tadashi | |
dc.contributor.coauthor | Hettiarachchi, Hansi | |
dc.contributor.coauthor | Ameer, Iqra | |
dc.contributor.coauthor | Uca, Onur | |
dc.contributor.coauthor | Liza, Farhana Ferdousi | |
dc.contributor.coauthor | Hu, Tiancheng | |
dc.contributor.department | Department of Sociology | |
dc.contributor.kuauthor | Hürriyetoğlu, Ali | |
dc.contributor.kuprofile | Teaching Faculty | |
dc.contributor.other | Department of Sociology | |
dc.contributor.schoolcollegeinstitute | College of Social Sciences and Humanities | |
dc.contributor.yokid | N/A | |
dc.date.accessioned | 2024-11-10T00:01:03Z | |
dc.date.issued | 2022 | |
dc.description.abstract | Despite the importanceofunderstandingcausality, corporaaddressingcausal relationsare limited. There isadiscrepancy betweenexistingannotationguidelinesofeventcausalityandconventionalcausalitycorporathat focusmoreonlinguistics. Manyguidelinesrestrict themselvestoincludeonlyexplicit relationsorclause-basedarguments. Therefore,weproposean annotationschemaforeventcausalitythataddressestheseconcerns.Weannotated3,559eventsentencesfromprotestevent newswithlabelsonwhether itcontainscausal relationsornot. OurcorpusisknownastheCausalNewsCorpus(CNC).A neuralnetworkbuiltuponastate-of-the-artpre-trainedlanguagemodelperformedwellwith81.20%F1scoreontest set, and83.46%in5-foldscross-validation. CNCistransferableacrosstwoexternalcorpora:CausalTimeBank(CTB)andPenn DiscourseTreebank(PDTB).Leveragingeachoftheseexternaldatasetsfortraining,weachieveduptoapproximately64%F1 ontheCNCtestsetwithoutadditionalfine-tuning. CNCalsoservedasaneffectivetrainingandpre-trainingdataset for the twoexternalcorpora. Lastly,wedemonstratethedifficultyofourtasktothelaymaninacrowd-sourcedannotationexercise. Ourannotatedcorpusispubliclyavailable,providingavaluableresourceforcausaltextminingresearchers. | |
dc.description.indexedby | WoS | |
dc.description.indexedby | Scopus | |
dc.description.openaccess | NO | |
dc.description.publisherscope | International | |
dc.description.sponsoredbyTubitakEu | N/A | |
dc.identifier.doi | N/A | |
dc.identifier.isbn | 979-10-95546-72-6 | |
dc.identifier.quartile | N/A | |
dc.identifier.scopus | 2-s2.0-85136573341 | |
dc.identifier.uri | https://hdl.handle.net/20.500.14288/15905 | |
dc.identifier.wos | 889371702043 | |
dc.keywords | Causality | |
dc.keywords | Event causality | |
dc.keywords | Text mining | |
dc.keywords | Natural language understanding | |
dc.language | English | |
dc.publisher | EUROPEAN LANGUAGE RESOURCES ASSOC-ELRA | |
dc.relation.grantno | National Research Foundation, Singapore under its Industry Alignment Fund - Pre-positioning (IAF-PP) Funding Initiative This project is supported by the National Research Foundation, Singapore under its Industry Alignment Fund - Pre-positioning (IAF-PP) Funding Initiative. Any opinions, findings and conclusions or recommendations expressed in this material are those of the author(s) and do not reflect the views of National Research Foundation, Singapore. | |
dc.source | LREC 2022: Thirteen International Conference on Language Resources and Evaluation | |
dc.subject | Computer Science | |
dc.subject | Interdisciplinary applications | |
dc.subject | Linguistics | |
dc.title | The causal news corpus: annotating causal relations in event sentences from news | |
dc.type | Conference proceeding | |
dspace.entity.type | Publication | |
local.contributor.authorid | 0000-0003-3003-1783 | |
local.contributor.kuauthor | Hürriyetoğlu, Ali | |
relation.isOrgUnitOfPublication | 10f5be47-fab1-42a1-af66-1642ba4aff8e | |
relation.isOrgUnitOfPublication.latestForDiscovery | 10f5be47-fab1-42a1-af66-1642ba4aff8e |