Publication: 3D face recognition
dc.contributor.coauthor | Dutaǧaci, H. | |
dc.contributor.coauthor | Sankur, B. | |
dc.contributor.department | Department of Computer Engineering | |
dc.contributor.kuauthor | Yemez, Yücel | |
dc.contributor.kuprofile | Faculty Member | |
dc.contributor.other | Department of Computer Engineering | |
dc.contributor.schoolcollegeinstitute | College of Engineering | |
dc.contributor.yokid | 107907 | |
dc.date.accessioned | 2024-11-09T23:51:27Z | |
dc.date.issued | 2006 | |
dc.description.abstract | In this paper, we compare face recognition performances of various features applied on registered 3D scans of faces. The features we compare are DFT or DCT- based features, ICA-based features and NNMF-based features. We apply the feature extraction techniques to three different representations of registered faces: 3D point clouds, 2D depth images and 3D voxel representations. We also consider block-based DFT or DCT-based local features on 2D depth images and their fusion schemes. Experiments using different combinations of representation types and feature vectors are conducted on the 3D-RMA dataset. / Bu bildiride, kayıtlı 3B yüz taramalarında uygulanan çeşitli özelliklerin yüz tanıma performanslarını karşılaştırıyoruz. Karşılaştırdığımız özellikler, DFT veya DCT tabanlı özellikler, ICA tabanlı özellikler ve NNMF tabanlı özelliklerdir. Öznitelik çıkarma tekniklerini kayıtlı yüzlerin üç farklı temsiline uyguluyoruz: 3B nokta bulutları, 2B derinlik görüntüleri ve 3B voksel temsilleri. Ayrıca, 2D derinlik görüntüleri ve bunların füzyon şemaları üzerindeki blok tabanlı DFT veya DCT tabanlı yerel özellikleri de dikkate alıyoruz. 3D-RMA veri seti üzerinde farklı temsil türleri ve özellik vektörleri kombinasyonları kullanılarak deneyler yapılmıştır. | |
dc.description.indexedby | WoS | |
dc.description.indexedby | Scopus | |
dc.description.openaccess | YES | |
dc.description.publisherscope | International | |
dc.description.sponsoredbyTubitakEu | N/A | |
dc.description.volume | 2006 | |
dc.identifier.doi | 10.1109/SIU.2006.1659828 | |
dc.identifier.isbn | 1424-4023-95 | |
dc.identifier.isbn | 9781-4244-0239-7 | |
dc.identifier.link | https://www.scopus.com/inward/record.uri?eid=2-s2.0-34247162645&doi=10.1109%2fSIU.2006.1659828&partnerID=40&md5=5f4ce2a5185f663fbb9493e10f0a14ee | |
dc.identifier.quartile | N/A | |
dc.identifier.scopus | 2-s2.0-34247162645 | |
dc.identifier.uri | https://IEEExplore.IEEE.org/stamp/stamp.jsp?arnumber=1659828 | |
dc.identifier.uri | https://hdl.handle.net/20.500.14288/14710 | |
dc.keywords | Feature vectors | |
dc.keywords | Three dimensional face recognition | |
dc.keywords | Voxels | |
dc.keywords | Density functional theory | |
dc.keywords | Discrete cosine transforms | |
dc.keywords | Feature extraction | |
dc.keywords | Image analysis | |
dc.keywords | Image registration | |
dc.keywords | Vector quantization | |
dc.keywords | Face recognition | |
dc.language | Turkish | |
dc.publisher | Institute of Electrical and Electronics Engineers (IEEE) | |
dc.source | 2006 IEEE 14th Signal Processing and Communications Applications Conference | |
dc.subject | Computer engineering | |
dc.title | 3D face recognition | |
dc.title.alternative | Üç boyutlu yüz tanıma | |
dc.type | Conference proceeding | |
dspace.entity.type | Publication | |
local.contributor.authorid | 0000-0002-7515-3138 | |
local.contributor.kuauthor | Yemez, Yücel | |
relation.isOrgUnitOfPublication | 89352e43-bf09-4ef4-82f6-6f9d0174ebae | |
relation.isOrgUnitOfPublication.latestForDiscovery | 89352e43-bf09-4ef4-82f6-6f9d0174ebae |