Publication:
3D face recognition

dc.contributor.coauthorDutaǧaci, H.
dc.contributor.coauthorSankur, B.
dc.contributor.departmentDepartment of Computer Engineering
dc.contributor.kuauthorYemez, Yücel
dc.contributor.kuprofileFaculty Member
dc.contributor.otherDepartment of Computer Engineering
dc.contributor.schoolcollegeinstituteCollege of Engineering
dc.contributor.yokid107907
dc.date.accessioned2024-11-09T23:51:27Z
dc.date.issued2006
dc.description.abstractIn this paper, we compare face recognition performances of various features applied on registered 3D scans of faces. The features we compare are DFT or DCT- based features, ICA-based features and NNMF-based features. We apply the feature extraction techniques to three different representations of registered faces: 3D point clouds, 2D depth images and 3D voxel representations. We also consider block-based DFT or DCT-based local features on 2D depth images and their fusion schemes. Experiments using different combinations of representation types and feature vectors are conducted on the 3D-RMA dataset. / Bu bildiride, kayıtlı 3B yüz taramalarında uygulanan çeşitli özelliklerin yüz tanıma performanslarını karşılaştırıyoruz. Karşılaştırdığımız özellikler, DFT veya DCT tabanlı özellikler, ICA tabanlı özellikler ve NNMF tabanlı özelliklerdir. Öznitelik çıkarma tekniklerini kayıtlı yüzlerin üç farklı temsiline uyguluyoruz: 3B nokta bulutları, 2B derinlik görüntüleri ve 3B voksel temsilleri. Ayrıca, 2D derinlik görüntüleri ve bunların füzyon şemaları üzerindeki blok tabanlı DFT veya DCT tabanlı yerel özellikleri de dikkate alıyoruz. 3D-RMA veri seti üzerinde farklı temsil türleri ve özellik vektörleri kombinasyonları kullanılarak deneyler yapılmıştır.
dc.description.indexedbyWoS
dc.description.indexedbyScopus
dc.description.openaccessYES
dc.description.publisherscopeInternational
dc.description.sponsoredbyTubitakEuN/A
dc.description.volume2006
dc.identifier.doi10.1109/SIU.2006.1659828
dc.identifier.isbn1424-4023-95
dc.identifier.isbn9781-4244-0239-7
dc.identifier.linkhttps://www.scopus.com/inward/record.uri?eid=2-s2.0-34247162645&doi=10.1109%2fSIU.2006.1659828&partnerID=40&md5=5f4ce2a5185f663fbb9493e10f0a14ee
dc.identifier.quartileN/A
dc.identifier.scopus2-s2.0-34247162645
dc.identifier.urihttps://IEEExplore.IEEE.org/stamp/stamp.jsp?arnumber=1659828
dc.identifier.urihttps://hdl.handle.net/20.500.14288/14710
dc.keywordsFeature vectors
dc.keywordsThree dimensional face recognition
dc.keywordsVoxels
dc.keywordsDensity functional theory
dc.keywordsDiscrete cosine transforms
dc.keywordsFeature extraction
dc.keywordsImage analysis
dc.keywordsImage registration
dc.keywordsVector quantization
dc.keywordsFace recognition
dc.languageTurkish
dc.publisherInstitute of Electrical and Electronics Engineers (IEEE)
dc.source2006 IEEE 14th Signal Processing and Communications Applications Conference
dc.subjectComputer engineering
dc.title3D face recognition
dc.title.alternativeÜç boyutlu yüz tanıma
dc.typeConference proceeding
dspace.entity.typePublication
local.contributor.authorid0000-0002-7515-3138
local.contributor.kuauthorYemez, Yücel
relation.isOrgUnitOfPublication89352e43-bf09-4ef4-82f6-6f9d0174ebae
relation.isOrgUnitOfPublication.latestForDiscovery89352e43-bf09-4ef4-82f6-6f9d0174ebae

Files