Publication:
FRET-based nanoscale point-to-point and broadcast communications with multi-exciton transmission and channel routing

Thumbnail Image

Departments

School / College / Institute

Program

KU Authors

Co-Authors

Publication Date

Language

Embargo Status

NO

Journal Title

Journal ISSN

Volume Title

Alternative Title

Abstract

Nanoscale communication based on Forster Resonance Energy Transfer (FRET) enables nanoscale single molecular devices to communicate with each other utilizing excitons generated on fluorescentmolecules as information carriers. Based on the point-to-point single-exciton FRET-based nanocommunication model, we investigate the multiple-exciton case for point-to-point and broadcast communications following an information theoretical approach and conducting simulations through Monte Carlo approach. We demonstrate that the multi-exciton transmission significantly improves the channel reliability and the range of the communication up to tens of nanometers for immobile nanonodes providing high data transmission rates. Furthermore, our analyses indicate that multi-exciton transmission enables broadcasting of information from a transmitter nanonode to many receiver nanonodes pointing out the potential of FRET-based communication to extend over nanonetworks. In this study, we also propose electrically and chemically controllable routing mechanisms exploiting the strong dependence of FRET rate on spectral and spatial characteristics of fluorescent molecules. We show that the proposed routing mechanisms enable the remote control of information flow in FRET-based nanonetworks. The high transmission rates obtained by multi-exciton scheme for point-to-point and broadcast communications, as well as the routing opportunities make FRET-based communication promising for future molecular computers.

Source

Publisher

Institute of Electrical and Electronics Engineers (IEEE)

Subject

Biochemistry and molecular biology, Science and technology

Citation

Has Part

Source

IEEE Transactions on Nanobioscience

Book Series Title

Edition

DOI

item.page.datauri

Link

Rights

Copyrights Note

Endorsement

Review

Supplemented By

Referenced By

0

Views

4

Downloads