Publication:
Quantum-metric contribution to the pair mass in spin-orbit-coupled Fermi superfluids

Thumbnail Image

Departments

School / College / Institute

Program

KU Authors

Co-Authors

Publication Date

Language

Embargo Status

NO

Journal Title

Journal ISSN

Volume Title

Alternative Title

Abstract

As a measure of the quantum distance between Bloch states in the Hilbert space, the quantum metric was introduced to solid-state physics through the real part of the so-called geometric Fubini-Study tensor, the imaginary part of which corresponds to the Berry curvature measuring the emergent gauge field in momentum space. Here, we first derive the Ginzburg-Landau theory near the critical superfluid transition temperature and then identify and analyze the geometric effects on the effective mass tensor of the Cooper pairs. By showing that the quantum-metric contribution accounts for a sizable fraction of the pair mass in a surprisingly large parameter regime throughout the BCS-Bose-Einstein condensate crossover, we not only reveal the physical origin of its governing role in the superfluid density tensor but also hint at its plausible roles in many other observables.

Source

Publisher

American Physical Society (APS)

Subject

Optics, Physics, atomic, molecular and chemical

Citation

Has Part

Source

Physical Review A

Book Series Title

Edition

DOI

10.1103/PhysRevA.97.033625

item.page.datauri

Link

Rights

Copyrights Note

Endorsement

Review

Supplemented By

Referenced By

0

Views

5

Downloads

View PlumX Details