Publication:
Reduced graphene oxide/few-layer phosphorene binary heterojunctions as metal-free photocatalysts for the sustainable photoredox C-H arylation of heteroarenes

Placeholder

School / College / Institute

Organizational Unit
Organizational Unit

Program

KU Authors

Co-Authors

Turbedaroglu, Ɩzge
KılıƧ, Haydar

Publication Date

Language

Embargo Status

Journal Title

Journal ISSN

Volume Title

Alternative Title

Abstract

Herein, we report the fabrication of few-layer phosphorene (FLP)/reduced graphene oxide (rGO) binary heterojunctions as metal-free photocatalysts for the direct C-H arylation of heteroarenes under visible light irradiation. The FLP/rGO heterojunctions were prepared by mixing the solutions of well-exfoliated rGO and FLP nanosheets in an ultrasonic bath, resulting in a well-coupled structure between rGO and FLP. Characterization revealed enhanced stability, charge separation efficiency, and extended charge transfer ability in the heterojunction compared to the pristine materials. Studying different FLP to rGO mass ratios helped to find the optimum synergy where the materials exhibited the highest photocatalytic activity, and the optimized FLP/rGO catalyst with 30% FLP yielded the desired products with the highest photocatalytic efficiency in the C-H arylation of aryl diazonium salts and heteroarenes (24 examples in total). Notably, aryl diazonium salts with electron-withdrawing groups achieved high yields in the range of 68-90%. The FLP/rGO heterojunctions were successfully applied in synthesizing dantrolene, a commercially available drug, yielding 41% yield for C-H arylation and 90% yield for subsequent synthesis. The heterojunctions demonstrated excellent reusability, maintaining high catalytic activity over five cycles with only a 6% decrease in their initial activity. Mechanistic studies suggest a plausible single electron transfer mechanism wherein photogenerated electrons are transferred from FLP/rGO to aryl diazonium salts, forming biaryl radical intermediates and subsequent products. Overall, the FLP/rGO binary heterojunctions have been demonstrated to be efficient and sustainable metal-free photocatalysts for C-H arylation reactions, showcasing a broad substrate scope and potential applications in synthetic chemistry and pharmaceutical synthesis.

Source

Publisher

American Chemical Society

Subject

Chemistry, multidisciplinary, Green and sustainable science and technology, Engineering, chemical

Citation

Has Part

Source

ACS Sustainable Chemistry and Engineering

Book Series Title

Edition

DOI

10.1021/acssuschemeng.3c07117

item.page.datauri

Link

Rights

Copyrights Note

Endorsement

Review

Supplemented By

Referenced By

1

Views

0

Downloads

View PlumX Details