Publication:
Stochastic kinematic modeling and feature extraction for gait analysis

Placeholder

School / College / Institute

Program

KU Authors

Co-Authors

Dockstader, Shiloh L.
Berg, Michel J.

Publication Date

Language

Embargo Status

Journal Title

Journal ISSN

Volume Title

Alternative Title

Abstract

This research presents a new model-based approach toward the three-dimensional (3-D) tracking and extraction of gait and human motion. We suggest the use of a hierarchical, structural model of the human body that introduces the concept of soft kinematic constraints. These constraints take the form of a priori, stochastic distributions learned from previous configurations of the body exhibited during specific activities; they are used to supplement an existing motion model limited by hard kinematic constraints. We use time-varying parameters of the structural model to measure gait velocity, stance width, stride length, stance times, and other gait variables with multiple degrees of accuracy and robustness. To characterize tracking performance, we also introduce a novel geometric model of expected tracking failures. We demonstrate and quantify the performance of the suggested models using multi-view, video sequences of human movement captured in a complex home environment.

Source

Publisher

IEEE-Inst Electrical Electronics Engineers Inc

Subject

Computer Science, Artificial intelligence, Electrical electronics engineering

Citation

Has Part

Source

IEEE Transactions on Image Processing

Book Series Title

Edition

DOI

10.1109/TIP.2003.815259

item.page.datauri

Link

Rights

Copyrights Note

Endorsement

Review

Supplemented By

Referenced By

0

Views

0

Downloads

View PlumX Details