Publication:
Stochastic kinematic modeling and feature extraction for gait analysis

dc.contributor.coauthorDockstader, Shiloh L.
dc.contributor.coauthorBerg, Michel J.
dc.contributor.departmentDepartment of Electrical and Electronics Engineering
dc.contributor.kuauthorTekalp, Ahmet Murat
dc.contributor.kuprofileFaculty Member
dc.contributor.otherDepartment of Electrical and Electronics Engineering
dc.contributor.schoolcollegeinstituteCollege of Engineering
dc.contributor.yokid26207
dc.date.accessioned2024-11-09T23:42:21Z
dc.date.issued2003
dc.description.abstractThis research presents a new model-based approach toward the three-dimensional (3-D) tracking and extraction of gait and human motion. We suggest the use of a hierarchical, structural model of the human body that introduces the concept of soft kinematic constraints. These constraints take the form of a priori, stochastic distributions learned from previous configurations of the body exhibited during specific activities; they are used to supplement an existing motion model limited by hard kinematic constraints. We use time-varying parameters of the structural model to measure gait velocity, stance width, stride length, stance times, and other gait variables with multiple degrees of accuracy and robustness. To characterize tracking performance, we also introduce a novel geometric model of expected tracking failures. We demonstrate and quantify the performance of the suggested models using multi-view, video sequences of human movement captured in a complex home environment.
dc.description.indexedbyWoS
dc.description.indexedbyScopus
dc.description.indexedbyPubMed
dc.description.issue8
dc.description.openaccessNO
dc.description.publisherscopeInternational
dc.description.volume12
dc.identifier.doi10.1109/TIP.2003.815259
dc.identifier.eissn1941-0042
dc.identifier.issn1057-7149
dc.identifier.scopus2-s2.0-0142169870
dc.identifier.urihttp://dx.doi.org/10.1109/TIP.2003.815259
dc.identifier.urihttps://hdl.handle.net/20.500.14288/13303
dc.identifier.wos184513100011
dc.keywordsFailure analysis
dc.keywordsGait analysis
dc.keywordsHuman motion analysis
dc.keywordsKalman filtering
dc.keywordsKinematic modeling
dc.keywordsMulti-object tracking
dc.keywordsOcclusion human motion
dc.keywordsHuman movement
dc.keywordsRecognition
dc.keywordsTracking
dc.keywordsPerception
dc.languageEnglish
dc.publisherIEEE-Inst Electrical Electronics Engineers Inc
dc.sourceIEEE Transactions on Image Processing
dc.subjectComputer Science
dc.subjectArtificial intelligence
dc.subjectElectrical electronics engineering
dc.titleStochastic kinematic modeling and feature extraction for gait analysis
dc.typeJournal Article
dspace.entity.typePublication
local.contributor.authorid0000-0003-1465-8121
local.contributor.kuauthorTekalp, Ahmet Murat
relation.isOrgUnitOfPublication21598063-a7c5-420d-91ba-0cc9b2db0ea0
relation.isOrgUnitOfPublication.latestForDiscovery21598063-a7c5-420d-91ba-0cc9b2db0ea0

Files