Publication:
A deformation-based approach to tuning of magnetic micromechanical resonators

dc.contributor.coauthorYalçınkaya, Arda D.
dc.contributor.departmentDepartment of Mechanical Engineering
dc.contributor.departmentN/A
dc.contributor.departmentDepartment of Mechanical Engineering
dc.contributor.kuauthorBiçer, Mahmut
dc.contributor.kuauthorEsfahani, Mohammad Nasr
dc.contributor.kuauthorAlaca, Burhanettin Erdem
dc.contributor.kuprofileResearcher
dc.contributor.kuprofilePhD Student
dc.contributor.kuprofileFaculty Member
dc.contributor.otherDepartment of Mechanical Engineering
dc.contributor.researchcenterKoç University Surface Science and Technology Center (KUYTAM) / Koç Üniversitesi Yüzey Teknolojileri Araştırmaları Merkezi (KUYTAM)
dc.contributor.schoolcollegeinstituteCollege of Engineering
dc.contributor.schoolcollegeinstituteGraduate School of Sciences and Engineering
dc.contributor.schoolcollegeinstituteCollege of Engineering
dc.contributor.yokidN/A
dc.contributor.yokidN/A
dc.contributor.yokid115108
dc.date.accessioned2024-11-09T23:49:23Z
dc.date.issued2018
dc.description.abstractResonance frequency tuning in magnetic micromechanical resonators remains a primary field of study for frequency reference applications. The use of magnetic micromechanical resonators for innovative timing, oscillator and sensing applications necessitates a platform for the precise control of the resonance frequency. The present work addresses a deformation based technique for tuning the resonance frequency of nickel micromechanical resonators. Frequency response is measured through magnetic actuation and optical readout. The tuning approach is based on a combination of flexural deformation and uniaxial strain. The bending deformation is achieved by using a DC current through the microbeam. This magnetomotive mechanism reduces the resonance frequency by about 13% for a maximum DC current of 80 mA. A substrate bending method is used for applying uniaxial strain to increase the resonance frequency by about 8%. A bidirectional frequency modulation is thus demonstrated by utilizing both deformation techniques. The interpretation of results is carried out by finite element analysis and electromechanical analogy in an equivalent circuit. Using deformation techniques, this study provides a rigorous approach to control the resonance frequency of magnetic micromechanical resonators.
dc.description.indexedbyWoS
dc.description.indexedbyScopus
dc.description.issue10
dc.description.openaccessNO
dc.description.publisherscopeInternational
dc.description.sponsoredbyTubitakEuN/A
dc.description.volume28
dc.identifier.doi10.1088/1361-6439/aac8f2
dc.identifier.eissn1361-6439
dc.identifier.issn0960-1317
dc.identifier.quartileQ3
dc.identifier.scopus2-s2.0-85052496315
dc.identifier.urihttp://dx.doi.org/10.1088/1361-6439/aac8f2
dc.identifier.urihttps://hdl.handle.net/20.500.14288/14364
dc.identifier.wos436100200001
dc.languageEnglish
dc.sourceJournal of Micromechanics and Microengineering
dc.subjectEngineering
dc.subjectElectrical electronic engineering
dc.subjectNanoscience
dc.subjectNanotechnology
dc.subjectInstruments
dc.subjectInstrumentation
dc.subjectPhysics
dc.subjectApplied physics
dc.titleA deformation-based approach to tuning of magnetic micromechanical resonators
dc.typeJournal Article
dspace.entity.typePublication
local.contributor.authorid0000-0002-3074-1745
local.contributor.authorid0000-0002-6973-2205
local.contributor.authorid0000-0001-5931-8134
local.contributor.kuauthorBiçer, Mahmut
local.contributor.kuauthorEsfahani, Mohammad Nasr
local.contributor.kuauthorAlaca, Burhanettin Erdem
relation.isOrgUnitOfPublicationba2836f3-206d-4724-918c-f598f0086a36
relation.isOrgUnitOfPublication.latestForDiscoveryba2836f3-206d-4724-918c-f598f0086a36

Files