Publication:
Ultra-high temperature multi-component shape memory alloys

dc.contributor.coauthorTrehern, William
dc.contributor.coauthorMa, Ji
dc.contributor.coauthorKaraman, İbrahim
dc.contributor.coauthorSun, Fanping
dc.contributor.coauthorChaudhry, Zaffir
dc.contributor.departmentDepartment of Mechanical Engineering
dc.contributor.kuauthorCanadinç, Demircan
dc.contributor.schoolcollegeinstituteCollege of Engineering
dc.date.accessioned2024-11-09T23:00:02Z
dc.date.issued2019
dc.description.abstractThis paper presents martensitic transformation characteristics of selected multi-component (Ni,Pd)(50)(Ti, Hf,Zr)(50) alloys, with an emphasis on superelasticity and thermal actuation behavior. We report, for the first time, austenite finish temperatures beyond 700 degrees C in NiTi-based high temperature shape memory alloys without the presence of platinum and gold. The increase in transformation temperatures, and transformation stress and recovered strains at elevated temperatures are attributed to the high configurational entropy of the studied alloys. Based on the current findings, we introduce multi-component ultra-high temperature shape memory alloys, which are expected to pioneer a completely new field of study and applications for shape memory alloys.
dc.description.indexedbyWOS
dc.description.indexedbyScopus
dc.description.openaccessNO
dc.description.publisherscopeInternational
dc.description.sponsoredbyTubitakEuN/A
dc.description.sponsorshipUnited Technologies Research Center through NASA [NNX15AR27A]
dc.description.sponsorshipUS Air Force Office of Scientific Research [FA9550-15-1-0287]
dc.description.sponsorshipDirectorate For Engineering
dc.description.sponsorshipDiv of Engineering Education and Centers [1461202] Funding Source: National Science Foundation The authors acknowledge the financial support by the United Technologies Research Center, through NASA Contract no. NNX15AR27A and by the US Air Force Office of Scientific Research, under Grant no. FA9550-15-1-0287.
dc.description.volume158
dc.identifier.doi10.1016/j.scriptamat.2018.08.019
dc.identifier.eissn1872-8456
dc.identifier.issn1359-6462
dc.identifier.quartileQ2
dc.identifier.scopus2-s2.0-85052618987
dc.identifier.urihttps://doi.org/10.1016/j.scriptamat.2018.08.019
dc.identifier.urihttps://hdl.handle.net/20.500.14288/7977
dc.identifier.wos447094500018
dc.keywordsHigh temperature shape memory alloys
dc.keywordsMulti-component alloys
dc.keywordsHigh entropy alloys
dc.keywordsMartensitic Transformation
dc.keywordsSuperelasticity high-entropy alloys
dc.keywordsNiti
dc.keywordsDeformation
dc.keywordsStrain
dc.language.isoeng
dc.publisherPergamon-Elsevier Science Ltd
dc.relation.ispartofScripta Materialia
dc.subjectNanoscience nanotechnology
dc.subjectMaterials science
dc.subjectMultidisciplinary
dc.subjectMetallurgy metallurgical engineering
dc.titleUltra-high temperature multi-component shape memory alloys
dc.typeJournal Article
dspace.entity.typePublication
local.contributor.kuauthorCanadinç, Demircan
local.publication.orgunit1College of Engineering
local.publication.orgunit2Department of Mechanical Engineering
relation.isOrgUnitOfPublicationba2836f3-206d-4724-918c-f598f0086a36
relation.isOrgUnitOfPublication.latestForDiscoveryba2836f3-206d-4724-918c-f598f0086a36
relation.isParentOrgUnitOfPublication8e756b23-2d4a-4ce8-b1b3-62c794a8c164
relation.isParentOrgUnitOfPublication.latestForDiscovery8e756b23-2d4a-4ce8-b1b3-62c794a8c164

Files