Publication: In vitro antibacterial and cytotoxicity assessment of magnetron sputtered Ti1.5ZrTa0.5Nb0.5W0.5 refractory high-entropy alloy doped with Ag nanoparticles
Program
KU Authors
Co-Authors
Advisor
Publication Date
2022
Language
English
Type
Journal Article
Journal Title
Journal ISSN
Volume Title
Abstract
The aim of the current study is to develop and evaluate antibacterial and biocompatible refractory high-entropy alloy (RHEAs) film using RF magnetron sputtering technique. For this purpose, Ti1.5ZrTa0.5Nb0.5W0.5 RHEA film and its Ag nanoparticle doped analog (with an Ag content of 9 atomic %) were deposited on Ti6Al4V substrate. The microstructural characterization revealed the homogenous distribution of the constituent elements and amorphous structure of the deposited films. The antibacterial activity of Ag nanoparticles doped RHEA film was compared with that of undoped film and uncoated Ti6Al4V. The results indicated that doping Ag nanoparticles reduced the colony forming unit of P. Aeruginosa and S. Aureus bacteria by 98.5% and 90.9%, respectively. In addition, healthy C2C12 mouse muscle myoblast cells adhered and proliferated perfectly on the surface of antibacterial Ag nanoparticles doped RHEA film with no indication of toxic effect, demonstrating promising biocompatibility in addition to its strong antibacterial property.
Description
Source:
Vacuum
Publisher:
Elsevier
Keywords:
Subject
Materials science, multidisciplinary, Physics, applied