Publication: A note on power bounded elements of von neumann algebras
| dc.contributor.department | Department of Mathematics | |
| dc.contributor.kuauthor | Faculty Member, Ülger, Ali | |
| dc.contributor.schoolcollegeinstitute | College of Sciences | |
| dc.date.accessioned | 2024-11-09T22:50:41Z | |
| dc.date.issued | 2014 | |
| dc.description.abstract | Let A be a von Neumann algebra with predual A(*) and the unit element 1. An element a of A is said to be power bounded if sup(n >= 0) vertical bar vertical bar a(n)vertical bar vertical bar < infinity. In this note we show that, for any power bounded element a of A, theta = sigma(A, A(*)) - lim(n ->infinity)(1+a/2)(n) exists, theta is an idempotent and theta a = a theta = theta. | |
| dc.description.indexedby | WOS | |
| dc.description.issue | 2 | |
| dc.description.openaccess | NO | |
| dc.description.publisherscope | International | |
| dc.description.sponsoredbyTubitakEu | N/A | |
| dc.description.volume | 59 | |
| dc.identifier.issn | 0035-3965 | |
| dc.identifier.quartile | Q4 | |
| dc.identifier.uri | https://hdl.handle.net/20.500.14288/6715 | |
| dc.identifier.wos | 445594500011 | |
| dc.keywords | Von Neumann algebras | |
| dc.keywords | Power bounded elements | |
| dc.language.iso | eng | |
| dc.publisher | Editura Acad Romane | |
| dc.relation.ispartof | Revue Roumaine De Mathematiques Pures Et Appliquees | |
| dc.subject | Mathematics | |
| dc.title | A note on power bounded elements of von neumann algebras | |
| dc.type | Journal Article | |
| dspace.entity.type | Publication | |
| local.contributor.kuauthor | Ülger, Ali | |
| local.publication.orgunit1 | College of Sciences | |
| local.publication.orgunit2 | Department of Mathematics | |
| relation.isOrgUnitOfPublication | 2159b841-6c2d-4f54-b1d4-b6ba86edfdbe | |
| relation.isOrgUnitOfPublication.latestForDiscovery | 2159b841-6c2d-4f54-b1d4-b6ba86edfdbe | |
| relation.isParentOrgUnitOfPublication | af0395b0-7219-4165-a909-7016fa30932d | |
| relation.isParentOrgUnitOfPublication.latestForDiscovery | af0395b0-7219-4165-a909-7016fa30932d |
