Publication:
Metformin does not prevent DNA damage in lymphocytes despite its antioxidant properties against cumene hydroperoxide-induced oxidative stress

Placeholder

School / College / Institute

Organizational Unit

Program

KU Authors

Co-Authors

Onaran, Ihan
Guven, Gulgun S.
Kanigur, Gonul
Vehid, Suphi

Publication Date

Language

Embargo Status

Journal Title

Journal ISSN

Volume Title

Alternative Title

Abstract

Metformin (1-(diaminomethylidene)-3.3-dimethyl-guanidine), which is the most commonly prescribed oral antihyperglycaemic drug in the world, was reported to have several antioxidant properties such as the inhibition of advanced glycation end-products. In addition to its use in the treatment of diabetes, it has been suggested that metformin may be a promising anti-aging agent. The present work was aimed at assessing the possible protective effects of metformin against DNA-damage induction by oxidative stress in vitro. The effects of metformin were compared with those of N-acetylcysteine (NAC). For this purpose, peripheral blood lymphocytes from aged (n = 10) and young (n = 10) individuals were pre-incubated with various concentrations of metformin (10-50 mu M), followed by incubation with 15 mu M cumene hydroperoxide (CumOOH) for 48 h, under conditions of low oxidant level, which do not induce cell death. Protection against oxidative DNA damage was evaluated by use of the Comet assay and the cytokinesis-block micronucleus technique. Changes in the levels of malondialdehyde + 4-hydroxy-alkenals, an index of oxidative stress, were also measured in lymphocytes. At concentrations ranging from 10 mu M to 50 mu M. metformin did not protect the lymphocytes from DNA damage, while 50 VLM NAC possessed an effective protective effect against CumOOH-induced DNA damage. Furthermore, NAC, but not metformin. inhibited DNA fragmentation induced by CumOOH. In contrast to the lack of protection against oxidative damage in lymphocyte cultures. metformin significantly protected the cells from lipid peroxidation in both age groups, although not as effective as NAC in preventing the peroxidative damage at the highest doses. Within the limitations of this study, the results indicate that pharmacological concentrations of metformin are unable to protect against DNA damage induced by a pro-oxidant stimulus in cultured human lymphocytes, despite its antioxidant properties.

Source

Publisher

Elsevier

Subject

Biotechnology, Applied microbiology, Genetics, Heredity, Toxicology

Citation

Has Part

Source

Mutation Research-Genetic Toxicology And Environmental Mutagenesis

Book Series Title

Edition

DOI

10.1016/j.mrgentox.2006.06.036

item.page.datauri

Link

Rights

Copyrights Note

Endorsement

Review

Supplemented By

Referenced By

0

Views

0

Downloads

View PlumX Details