Publication:
Cutting down the energy cost of geographically distributed cloud data centers

dc.contributor.coauthorCambazoğlu, Berkant Barla
dc.contributor.departmentDepartment of Computer Engineering
dc.contributor.departmentGraduate School of Sciences and Engineering
dc.contributor.kuauthorGüler, Hüseyin
dc.contributor.kuauthorÖzkasap, Öznur
dc.contributor.schoolcollegeinstituteCollege of Engineering
dc.contributor.schoolcollegeinstituteGRADUATE SCHOOL OF SCIENCES AND ENGINEERING
dc.date.accessioned2024-11-09T23:05:24Z
dc.date.issued2013
dc.description.abstractThe energy costs constitute a significant portion of the total cost of cloud providers. The major cloud data centers are often geographically distributed, and this brings an opportunity to minimize their energy cost. In this work, we model a geographically distributed data center network that is specialized to run batch jobs. Taking into account the spatio-temporal variation in the electricity prices and the outside weather temperature, we model the problem of minimizing the energy cost as a linear programming problem. We propose various heuristic solutions for the problem. Our simulations using real-life workload traces and electricity prices demonstrate that the proposed heuristics can considerably decrease the total energy cost of geographically distributed cloud data centers, compared to a baseline technique.
dc.description.indexedbyWOS
dc.description.indexedbyScopus
dc.description.openaccessNO
dc.description.publisherscopeInternational
dc.description.sponsoredbyTubitakEuEU - TÜBİTAK
dc.description.sponsorshipCOST (European Cooperation in Science and Technology) [IC0804]
dc.description.sponsorshipTUBITAK (The Scientific and Technical Research Council of Turkey) [109M761] This work was partially supported by the COST (European Cooperation in Science and Technology) framework, under Action IC0804: Energy efficiency in large scale distributed systems, and by TUBITAK (The Scientific and Technical Research Council of Turkey) under Grant 109M761.
dc.description.volume8046
dc.identifier.doi10.1007/978-3-642-40517-4_23
dc.identifier.eissn1611-3349
dc.identifier.isbn978-3-642-40517-4
dc.identifier.isbn978-3-642-40516-7
dc.identifier.issn0302-9743
dc.identifier.scopus2-s2.0-84885711202
dc.identifier.urihttps://doi.org/10.1007/978-3-642-40517-4_23
dc.identifier.urihttps://hdl.handle.net/20.500.14288/8798
dc.identifier.wos333556100023
dc.keywordsTime slot
dc.keywordsData center
dc.keywordsElectricity price
dc.keywordsCloud provider
dc.keywordsFirst come first serve
dc.language.isoeng
dc.publisherSpringer-Verlag Berlin
dc.relation.ispartofEnergy Efficiency in Large Scale Distributed Systems, EE-LSDS 2013
dc.subjectComputer science
dc.subjectInformation systems
dc.subjectTheory methods
dc.titleCutting down the energy cost of geographically distributed cloud data centers
dc.typeConference Proceeding
dspace.entity.typePublication
local.contributor.kuauthorGüler, Hüseyin
local.contributor.kuauthorÖzkasap, Öznur
local.publication.orgunit1GRADUATE SCHOOL OF SCIENCES AND ENGINEERING
local.publication.orgunit1College of Engineering
local.publication.orgunit2Department of Computer Engineering
local.publication.orgunit2Graduate School of Sciences and Engineering
relation.isOrgUnitOfPublication89352e43-bf09-4ef4-82f6-6f9d0174ebae
relation.isOrgUnitOfPublication3fc31c89-e803-4eb1-af6b-6258bc42c3d8
relation.isOrgUnitOfPublication.latestForDiscovery89352e43-bf09-4ef4-82f6-6f9d0174ebae
relation.isParentOrgUnitOfPublication8e756b23-2d4a-4ce8-b1b3-62c794a8c164
relation.isParentOrgUnitOfPublication434c9663-2b11-4e66-9399-c863e2ebae43
relation.isParentOrgUnitOfPublication.latestForDiscovery8e756b23-2d4a-4ce8-b1b3-62c794a8c164

Files