Publication:
Computational screening of ZIFs for CO2 separations

Placeholder

School / College / Institute

Organizational Unit

Program

KU Authors

Co-Authors

Publication Date

Language

Embargo Status

Journal Title

Journal ISSN

Volume Title

Alternative Title

Abstract

Using molecular simulations, we studied a diverse collection of zeolite-imidazolate frameworks (ZIFs) to evaluate their performances in adsorption- and membrane-based gas separations. Molecular simulations were performed for both single-component gases (CH4, CO2, H-2 and N-2) and binary gas mixtures (CO2/CH4, CO2/N-2, CO2/H-2 and CH4/H-2) to predict the intrinsic and mixture selectivities of ZIFs. These two selectivities were compared to discuss the importance of multi-component mixture effects on making predictions about the separation performance of a material. Gas separation performances of ZIFs were compared with other nanoporous materials and our results showed that several ZIFs can outperform well-known zeolites and metal-organic frameworks in CO2 separations. Several other properties of ZIFs such as gas permeability, working capacity and sorbent selection parameter were computed to identify the most promising materials in adsorption- and membrane-based separation of CO2/CH4, CO2/N-2, CO2/H-2 and CH4/H-2.

Source

Publisher

Taylor & Francis Ltd

Subject

Chemistry, Chemistry, physical and theoretical, Physics, Atoms, Molecular dynamics

Citation

Has Part

Source

Molecular Simulation

Book Series Title

Edition

DOI

10.1080/08927022.2014.923568

item.page.datauri

Link

Rights

Copyrights Note

Endorsement

Review

Supplemented By

Referenced By

0

Views

0

Downloads

View PlumX Details