Publication: Learning rate should scale inversely with high-order data moments in high-dimensional online independent component analysis
Program
KU Authors
Co-Authors
Publication Date
Language
Embargo Status
No
Journal Title
Journal ISSN
Volume Title
Alternative Title
Abstract
We investigate the impact of high-order moments on the learning dynamics of an online Independent Component Analysis (ICA) algorithm under a high-dimensional data model composed of a weighted sum of two non-Gaussian random variables. This model allows precise control of the input moment structure via a weighting parameter. Building on an existing ordinary differential equation (ODE)-based analysis in the high-dimensional limit, we demonstrate that as the high-order moments increase, the algorithm exhibits slower convergence and demands both a lower learning rate and greater initial alignment to achieve informative solutions. Our findings highlight the algorithm's sensitivity to the statistical structure of the input data, particularly its moment characteristics. Furthermore, the ODE framework reveals a critical learning rate threshold necessary for learning when moments approach their maximum. These insights motivate future directions in moment-aware initialization and adaptive learning rate strategies to counteract the degradation in learning speed caused by high non-Gaussianity, thereby enhancing the robustness and efficiency of ICA in complex, high-dimensional settings.
Source
Publisher
IEEE Computer Society
Subject
Machine Learning
Citation
Has Part
Source
IEEE International Workshop on Machine Learning for Signal Processing, MLSP
Book Series Title
Edition
DOI
10.1109/MLSP62443.2025.11204212
item.page.datauri
Link
Rights
CC BY-NC-ND (Attribution-NonCommercial-NoDerivs)
Copyrights Note
Creative Commons license
Except where otherwised noted, this item's license is described as CC BY-NC-ND (Attribution-NonCommercial-NoDerivs)

