Publication:
Learning rate should scale inversely with high-order data moments in high-dimensional online independent component analysis

dc.conference.date2025-08-31 through 2025-09-03
dc.conference.locationIstanbul
dc.contributor.departmentGraduate School of Sciences and Engineering
dc.contributor.departmentDepartment of Electrical and Electronics Engineering
dc.contributor.departmentKUIS AI (Koç University & İş Bank Artificial Intelligence Center)
dc.contributor.kuauthorGültekin, Muhammet Oğuzhan
dc.contributor.kuauthorDemir, Samet
dc.contributor.kuauthorDoğan, Zafer
dc.contributor.schoolcollegeinstituteGRADUATE SCHOOL OF SCIENCES AND ENGINEERING
dc.contributor.schoolcollegeinstituteCollege of Engineering
dc.contributor.schoolcollegeinstituteResearch Center
dc.date.accessioned2025-12-31T08:22:11Z
dc.date.available2025-12-31
dc.date.issued2025
dc.description.abstractWe investigate the impact of high-order moments on the learning dynamics of an online Independent Component Analysis (ICA) algorithm under a high-dimensional data model composed of a weighted sum of two non-Gaussian random variables. This model allows precise control of the input moment structure via a weighting parameter. Building on an existing ordinary differential equation (ODE)-based analysis in the high-dimensional limit, we demonstrate that as the high-order moments increase, the algorithm exhibits slower convergence and demands both a lower learning rate and greater initial alignment to achieve informative solutions. Our findings highlight the algorithm's sensitivity to the statistical structure of the input data, particularly its moment characteristics. Furthermore, the ODE framework reveals a critical learning rate threshold necessary for learning when moments approach their maximum. These insights motivate future directions in moment-aware initialization and adaptive learning rate strategies to counteract the degradation in learning speed caused by high non-Gaussianity, thereby enhancing the robustness and efficiency of ICA in complex, high-dimensional settings.
dc.description.fulltextYes
dc.description.harvestedfromManual
dc.description.indexedbyScopus
dc.description.publisherscopeInternational
dc.description.readpublishN/A
dc.description.sponsoredbyTubitakEuTÜBİTAK
dc.description.sponsorshipTürkiye Bilimsel ve Teknolojik Araştırma Kurumu, TÜBİTAK- (Project No: 124E063)
dc.identifier.doi10.1109/MLSP62443.2025.11204212
dc.identifier.embargoNo
dc.identifier.grantno124E063
dc.identifier.isbn9798331570293
dc.identifier.issn2161-0363
dc.identifier.quartileN/A
dc.identifier.scopus2-s2.0-105022083979
dc.identifier.urihttps://doi.org/10.1109/MLSP62443.2025.11204212
dc.identifier.urihttps://hdl.handle.net/20.500.14288/31644
dc.keywordsHigh-dimensional setting
dc.keywordsHigh-order moments
dc.keywordsIndependent component analysis (ICA)
dc.keywordsLearning dynamics
dc.keywordsNon-Gaussianity
dc.keywordsOnline learning
dc.language.isoeng
dc.publisherIEEE Computer Society
dc.relation.affiliationKoç University
dc.relation.collectionKoç University Institutional Repository
dc.relation.ispartofIEEE International Workshop on Machine Learning for Signal Processing, MLSP
dc.relation.openaccessYes
dc.rightsCC BY-NC-ND (Attribution-NonCommercial-NoDerivs)
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subjectMachine Learning
dc.titleLearning rate should scale inversely with high-order data moments in high-dimensional online independent component analysis
dc.typeConference Proceeding
dspace.entity.typePublication
person.familyNameGültekin
person.familyNameDemir
person.familyNameDoğan
person.givenNameMuhammet Oğuzhan
person.givenNameSamet
person.givenNameZafer
relation.isOrgUnitOfPublication3fc31c89-e803-4eb1-af6b-6258bc42c3d8
relation.isOrgUnitOfPublication21598063-a7c5-420d-91ba-0cc9b2db0ea0
relation.isOrgUnitOfPublication77d67233-829b-4c3a-a28f-bd97ab5c12c7
relation.isOrgUnitOfPublication.latestForDiscovery3fc31c89-e803-4eb1-af6b-6258bc42c3d8
relation.isParentOrgUnitOfPublication434c9663-2b11-4e66-9399-c863e2ebae43
relation.isParentOrgUnitOfPublication8e756b23-2d4a-4ce8-b1b3-62c794a8c164
relation.isParentOrgUnitOfPublicationd437580f-9309-4ecb-864a-4af58309d287
relation.isParentOrgUnitOfPublication.latestForDiscovery434c9663-2b11-4e66-9399-c863e2ebae43

Files