Publication: Different decellularization methods in bovine lung tissue reveals distinct biochemical composition, stiffness, and viscoelasticity in reconstituted hydrogels
dc.contributor.department | N/A | |
dc.contributor.department | N/A | |
dc.contributor.department | N/A | |
dc.contributor.department | N/A | |
dc.contributor.department | N/A | |
dc.contributor.department | N/A | |
dc.contributor.department | Department of Chemical and Biological Engineering | |
dc.contributor.department | N/A | |
dc.contributor.department | N/A | |
dc.contributor.department | N/A | |
dc.contributor.kuauthor | Kuşoğlu, Alican | |
dc.contributor.kuauthor | Yangın, Kardelen | |
dc.contributor.kuauthor | Özkan, Sena Nur | |
dc.contributor.kuauthor | Sarıca, Sevgi | |
dc.contributor.kuauthor | Örnek, Deniz | |
dc.contributor.kuauthor | Solcan, Nuriye | |
dc.contributor.kuauthor | Karaoğlu, İsmail Can | |
dc.contributor.kuauthor | Kızılel, Seda | |
dc.contributor.kuauthor | Bulutay, Pınar | |
dc.contributor.kuauthor | Fırat, Pınar Arıkan | |
dc.contributor.kuprofile | PhD Student | |
dc.contributor.kuprofile | PhD Student | |
dc.contributor.kuprofile | PhD Student | |
dc.contributor.kuprofile | PhD Student | |
dc.contributor.kuprofile | Master Student | |
dc.contributor.kuprofile | Master Student | |
dc.contributor.kuprofile | PhD Student | |
dc.contributor.kuprofile | Faculty Member | |
dc.contributor.kuprofile | Teaching Faculty | |
dc.contributor.kuprofile | Faculty Member | |
dc.contributor.other | Department of Chemical and Biological Engineering | |
dc.contributor.researchcenter | Koç University Research Center for Translational Medicine (KUTTAM) / Koç Üniversitesi Translasyonel Tıp Araştırma Merkezi (KUTTAM) | |
dc.contributor.schoolcollegeinstitute | Graduate School of Health Sciences | |
dc.contributor.schoolcollegeinstitute | Graduate School of Sciences and Engineering | |
dc.contributor.schoolcollegeinstitute | Graduate School of Health Sciences | |
dc.contributor.schoolcollegeinstitute | Graduate School of Health Sciences | |
dc.contributor.schoolcollegeinstitute | Graduate School of Health Sciences | |
dc.contributor.schoolcollegeinstitute | Graduate School of Sciences and Engineering | |
dc.contributor.schoolcollegeinstitute | College of Engineering | |
dc.contributor.schoolcollegeinstitute | School of Medicine | |
dc.contributor.schoolcollegeinstitute | School of Medicine | |
dc.contributor.schoolcollegeinstitute | School of Medicine | |
dc.contributor.yokid | N/A | |
dc.contributor.yokid | N/A | |
dc.contributor.yokid | N/A | |
dc.contributor.yokid | N/A | |
dc.contributor.yokid | N/A | |
dc.contributor.yokid | N/A | |
dc.contributor.yokid | N/A | |
dc.contributor.yokid | 28376 | |
dc.contributor.yokid | 133565 | |
dc.contributor.yokid | 207545 | |
dc.date.accessioned | 2024-11-09T22:49:46Z | |
dc.date.issued | 2023 | |
dc.description.abstract | Extracellula r matri x (ECM)-derived hydrogels are in demand for use in lung tissue engineering to mimic the native microenvironment of cells in vitro. Decellularization of native tissues has been pursued for preser v i n g organotypic ECM while eliminating cellular content and reconstitution into scaffolds which allows re-cellularization for modeling homeostasis, regeneration, or diseases. Achieving mechanical stabi l i t y and understanding the effects of the decellularization process on mechanical parameters of the reconstituted ECM hydrogels present a challenge in the field. Stiffness and viscoelasticity are important characteristics of tissue mechanics that regulate crucial cellular processes and their in vitro representation in engineered models is a current aspiration. The effect of decellulariza-tion on viscoelastic properties of resulting ECM hydrogels has not yet been addressed. The aim of this study was to establish bovine lung tissue decellularization for the first time via pursuing four different protocols and characterization of reconstituted decellularized lung ECM hydrogels for biochemical and mechanical properties. Our data reveal that bovine lungs provide a reproducible alternative to human lungs for disease modeling with optimal retention of ECM components upon decellularization. We demonstrate that the decellularization method significa n t l y affects ECM content, stiffness, and viscoelastic properties of resulting hydrogels. Lastly, we examined the impact of these aspects on viabi l i t y , morphology, and growth of lung cancer cells, healthy bronchial epithelial cells, and patient-derived lung organoids. | |
dc.description.indexedby | WoS | |
dc.description.indexedby | Scopus | |
dc.description.indexedby | PubMed | |
dc.description.openaccess | YES | |
dc.description.publisherscope | International | |
dc.description.sponsoredbyTubitakEu | N/A | |
dc.description.sponsorship | International Fellowship for Outstanding Researchers Program of Scientific and Technological Research Council of Turkey (TUBI?TAK) [118C238] | |
dc.description.sponsorship | Marie Sklodowska-Curie Individual Fellowship [101032602] This work was funded by the International Fellowship for Outstanding Researchers Program of Scientific and Technological Research Council of Turkey (TUBI?TAK) (grant no. 118C238) and Marie Sklodowska-Curie Individual Fellowship (MiTuMi, grant no. 101032602). Figure 1 (SO24KTYDC3), Figure 7a (PL24WOS5SS), Figure S3 (VZ24WOSGEO), and Table of Content (ToC) (QT24KTYPIN) figure were created with BioRender.com. | |
dc.identifier.doi | 10.1021/acsabm.2c00968 | |
dc.identifier.issn | 2576-6422 | |
dc.identifier.quartile | N/A | |
dc.identifier.scopus | 2-s2.0-85147553461 | |
dc.identifier.uri | http://dx.doi.org/10.1021/acsabm.2c00968 | |
dc.identifier.uri | https://hdl.handle.net/20.500.14288/6560 | |
dc.identifier.wos | 930531800001 | |
dc.keywords | Decellularization | |
dc.keywords | Lung hydrogels | |
dc.keywords | Tissue engineering | |
dc.keywords | Lung cancer | |
dc.keywords | Extracellular matrix | |
dc.language | English | |
dc.publisher | American Chemical Society (ACS) | |
dc.source | ACS Applied Bio Materials | |
dc.subject | Nanoscience | |
dc.subject | Nanotechnology | |
dc.subject | Materials science | |
dc.subject | Biomaterials | |
dc.title | Different decellularization methods in bovine lung tissue reveals distinct biochemical composition, stiffness, and viscoelasticity in reconstituted hydrogels | |
dc.type | Journal Article | |
dspace.entity.type | Publication | |
local.contributor.authorid | N/A | |
local.contributor.authorid | N/A | |
local.contributor.authorid | 0000-0003-1085-7625 | |
local.contributor.authorid | N/A | |
local.contributor.authorid | N/A | |
local.contributor.authorid | N/A | |
local.contributor.authorid | 0000-0003-3004-7742 | |
local.contributor.authorid | 0000-0001-9092-2698 | |
local.contributor.authorid | 0000-0001-5497-1513 | |
local.contributor.authorid | 0000-0001-8340-2678 | |
local.contributor.kuauthor | Kuşoğlu, Alican | |
local.contributor.kuauthor | Yangın, Kardelen | |
local.contributor.kuauthor | Özkan, Sena Nur | |
local.contributor.kuauthor | Sarıca, Sevgi | |
local.contributor.kuauthor | Örnek, Deniz | |
local.contributor.kuauthor | Solcan, Nuriye | |
local.contributor.kuauthor | Karaoğlu, İsmail Can | |
local.contributor.kuauthor | Kızılel, Seda | |
local.contributor.kuauthor | Bulutay, Pınar | |
local.contributor.kuauthor | Fırat, Pınar Arıkan | |
relation.isOrgUnitOfPublication | c747a256-6e0c-4969-b1bf-3b9f2f674289 | |
relation.isOrgUnitOfPublication.latestForDiscovery | c747a256-6e0c-4969-b1bf-3b9f2f674289 |