MOF-derived nanocrystalline ZnO with controlled orientation and photocatalytic activity

dc.contributor.authorid0000-0003-1459-1756
dc.contributor.coauthorDoustkhah, Esmail
dc.contributor.coauthorEsmat, Mohamed
dc.contributor.coauthorFukata, Naoki
dc.contributor.coauthorIde, Yusuke
dc.contributor.coauthorHanaor, Dorian A. H.
dc.contributor.coauthorAssadi, M. Hussein N.
dc.contributor.departmentDepartment of Chemistry
dc.contributor.kuauthorDoustkhah, Esmail
dc.contributor.kuprofileResearcher
dc.contributor.researchcenterKUTEM (Koç University Tüpraş Energy Center)
dc.contributor.schoolcollegeinstituteCollege of Sciences
dc.date.accessioned2025-01-19T10:30:21Z
dc.date.issued2022
dc.description.abstractWe show here that MOF-5, a sample Zn-based MOF, can uniquely transform into distinct zinc oxide nano-structures. Inspired by the interconversion synthesis of zeolites, we converted MOF-5 into nanocrystalline ZnO. We found the conversion of MOF-5 into ZnO to be tunable and straightforward simply by controlling the treatment temperature and choosing an appropriate structure-directing agent (SDA). Refined X-ray diffraction (XRD) patterns showed that a synthesis temperature of 180 degrees C (sample ZnO-180) was optimal for achieving high crystallinity. We examined ZnO-180 with high-resolution transmission electron microscopy (HRTEM), which confirmed that the samples were made of individual crystallites grown along the c-axis, or the (001) direction, thus exposing lower energy surfaces and corroborating the XRD pattern and the molecular dynamics calculations. Further investigations revealed that the obtained ZnO at 180 degrees C has a superior photocatalytic activity in degrading methylene blue to other ZnO nanostructures obtained at lower temperatures.
dc.description.indexedbyWoS
dc.description.indexedbyScopus
dc.description.indexedbyPubMed
dc.description.issue1
dc.description.publisherscopeInternational
dc.description.sponsorsThe authors gratefully acknowledge the funding of this project by computing time provided by the Paderborn Center for Parallel Computing (PC<SUP>2</SUP>). E.D. acknowledges the Japan Society for the Promotion of Science (JSPS) for providing the JSPS standard postdoctoral fellowship.
dc.description.volume303
dc.identifier.doi10.1016/j.chemosphere.2022.134932
dc.identifier.eissn1879-1298
dc.identifier.issn0045-6535
dc.identifier.quartileQ1
dc.identifier.scopus2-s2.0-85130525781
dc.identifier.urihttps://doi.org/10.1016/j.chemosphere.2022.134932
dc.identifier.urihttps://hdl.handle.net/20.500.14288/26043
dc.identifier.wos998999700004
dc.keywordsMetal-organic framework
dc.keywordsSingle-crystal ZnO
dc.keywordsCrystal planes
dc.keywordsPhotocatalytic degradation
dc.keywordsNanoarchitecture control
dc.languageen
dc.publisherPergamon-Elsevier Science Ltd
dc.relation.grantnoJapan Society for the Promotion of Science (JSPS); Paderborn Center for Parallel Computing (PC2)
dc.sourceChemosphere
dc.subjectEnvironmental sciences
dc.titleMOF-derived nanocrystalline ZnO with controlled orientation and photocatalytic activity
dc.typeJournal Article

Files