Lung cancer multi-omics digital human avatars for integrating precision medicine into clinical practice: the LANTERN study

dc.contributor.authorid0000-0001-8635-0279
dc.contributor.coauthorLococo, Filippo
dc.contributor.coauthorBoldrini, Luca
dc.contributor.coauthorDiepriye, Charles-Davies
dc.contributor.coauthorEvangelista, Jessica
dc.contributor.coauthorNero, Camilla
dc.contributor.coauthorFlamini, Sara
dc.contributor.coauthorMinucci, Angelo
dc.contributor.coauthorDe Paolis, Elisa
dc.contributor.coauthorVita, Emanuele
dc.contributor.coauthorCesario, Alfredo
dc.contributor.coauthorAnnunziata, Salvatore
dc.contributor.coauthorCalcagni, Maria Lucia
dc.contributor.coauthorChiappetta, Marco
dc.contributor.coauthorCancellieri, Alessandra
dc.contributor.coauthorLarici, Anna Rita
dc.contributor.coauthorCicchetti, Giuseppe
dc.contributor.coauthorTroost, Esther G. C.
dc.contributor.coauthorRoza, Adany
dc.contributor.coauthorFarre, Nuria
dc.contributor.coauthorVan Doorne, Dominique
dc.contributor.coauthorLeoncini, Fausto
dc.contributor.coauthorUrbani, Andrea
dc.contributor.coauthorTrisolini, Rocco
dc.contributor.coauthorBria, Emilio
dc.contributor.coauthorGiordano, Alessandro
dc.contributor.coauthorRindi, Guido
dc.contributor.coauthorSala, Evis
dc.contributor.coauthorTortora, Giampaolo
dc.contributor.coauthorValentini, Vincenzo
dc.contributor.coauthorBoccia, Stefania
dc.contributor.coauthorMargaritora, Stefano
dc.contributor.coauthorScambia, Giovanni
dc.contributor.departmentN/A
dc.contributor.kuauthorÖztürk, Ece
dc.contributor.kuprofileFaculty Member
dc.contributor.schoolcollegeinstituteSchool of Medicine
dc.contributor.yokid326940
dc.date.accessioned2025-01-19T10:33:36Z
dc.date.issued2023
dc.description.abstractBackgroundThe current management of lung cancer patients has reached a high level of complexity. Indeed, besides the traditional clinical variables (e.g., age, sex, TNM stage), new omics data have recently been introduced in clinical practice, thereby making more complex the decision-making process. With the advent of Artificial intelligence (AI) techniques, various omics datasets may be used to create more accurate predictive models paving the way for a better care in lung cancer patients.MethodsThe LANTERN study is a multi-center observational clinical trial involving a multidisciplinary consortium of five institutions from different European countries. The aim of this trial is to develop accurate several predictive models for lung cancer patients, through the creation of Digital Human Avatars (DHA), defined as digital representations of patients using various omics-based variables and integrating well-established clinical factors with genomic data, quantitative imaging data etc. A total of 600 lung cancer patients will be prospectively enrolled by the recruiting centers and multi-omics data will be collected. Data will then be modelled and parameterized in an experimental context of cutting-edge big data analysis. All data variables will be recorded according to a shared common ontology based on variable-specific domains in order to enhance their direct actionability. An exploratory analysis will then initiate the biomarker identification process. The second phase of the project will focus on creating multiple multivariate models trained though advanced machine learning (ML) and AI techniques for the specific areas of interest. Finally, the developed models will be validated in order to test their robustness, transferability and generalizability, leading to the development of the DHA. All the potential clinical and scientific stakeholders will be involved in the DHA development process. The main goals aim of LANTERN project are: i) To develop predictive models for lung cancer diagnosis and histological characterization; (ii) to set up personalized predictive models for individual-specific treatments; iii) to enable feedback data loops for preventive healthcare strategies and quality of life management.DiscussionThe LANTERN project will develop a predictive platform based on integration of multi-omics data. This will enhance the generation of important and valuable information assets, in order to identify new biomarkers that can be used for early detection, improved tumor diagnosis and personalization of treatment protocols.Ethics Committee approval number5420 - 0002485/23 from Fondazione Policlinico Universitario Agostino Gemelli IRCCS - Universita Cattolica del Sacro Cuore Ethics Committee.
dc.description.indexedbyWoS
dc.description.indexedbyScopus
dc.description.indexedbyPubMed
dc.description.issue1
dc.description.openaccessGreen Published, gold
dc.description.publisherscopeInternational
dc.description.sponsorsThis project was supported by the Ministry of Health under the frame of ERA PerMed JTC2022.
dc.description.volume23
dc.identifier.doi10.1186/s12885-023-10997-x
dc.identifier.eissn1471-2407
dc.identifier.quartileQ2
dc.identifier.scopus2-s2.0-85161949040
dc.identifier.urihttps://doi.org/10.1186/s12885-023-10997-x
dc.identifier.urihttps://hdl.handle.net/20.500.14288/26637
dc.identifier.wos1010884400002
dc.keywordsLung cancer
dc.keywordsArtificial intelligence (AI)
dc.keywordsDigital human avatars (DHA)
dc.keywordsPersonalize medicine
dc.keywordsMachine learning
dc.keywordsSystem medicine
dc.keywordsPrecision medicine
dc.keywordsGenomics
dc.keywordsRadiomics
dc.keywordsBig data
dc.languageen
dc.publisherBMC
dc.relation.grantnoMinistry of Health under the frame of ERA PerMed [JTC2022]
dc.sourceBMC Cancer
dc.subjectOncology
dc.titleLung cancer multi-omics digital human avatars for integrating precision medicine into clinical practice: the LANTERN study
dc.typeJournal Article

Files

Original bundle

Now showing 1 - 1 of 1
Thumbnail Image
Name:
IR05371.pdf
Size:
1.34 MB
Format:
Adobe Portable Document Format