Publications without Fulltext

Permanent URI for this collectionhttps://hdl.handle.net/20.500.14288/3

Browse

Search Results

Now showing 1 - 10 of 473
  • Placeholder
    Publication
    Evolution of transformation plasticity in austenite-to-bainite phase transformation: a multi parameter problem
    (Elsevier Science Sa, 2012) Lambers, Hans -Gerd; Maier, Hans Jürgen; Department of Mechanical Engineering; Canadinç, Demircan; Faculty Member; Department of Mechanical Engineering; College of Engineering; 23433
    The current paper presents a thorough experimental analysis of the austenite-to-bainite phase transformation, and provides insight into microstructural changes associated with the observed transformation plasticity (TP). Specifically, the evolution of TP was studied in the presence of several parameters, namely pre-deformation, temperature and superimposed constant stresses, and the observed phenomena were linked to microstructural changes under these circumstances based on experimental data. One major finding is that the evolution of TP strains is governed both by the superimposed external stresses and the temperature dependence of internal stresses introduced by pre-deformation.
  • Placeholder
    Publication
    Sculpture surface machining: a generalized model of ball-end milling force system
    (Elsevier Sci Ltd, 2003) N/A; Department of Mechanical Engineering; Lazoğlu, İsmail; Faculty Member; Department of Mechanical Engineering; College of Engineering; 179391
    A new mechanistic model is presented for the prediction of a cutting force system in ball-end milling of sculpture surfaces. The model has the ability to calculate the workpiece/cutter intersection domain automatically for a given cutter location (CL) file, cutter and workpiece geometries. Furthermore, an analytical approach is used to determine the instantaneous chip load (with and without runout) and cutting forces. In addition to predicting the cutting forces, the model also employs a Boolean approach for a given cutter, workpiece geometries, and CL file to determine the surface topography and scallop height variations alone, the workpiece surface which can be visualized in 3-D. The results of model validation experiments on machining Ti-6A1-4V are also reported. Comparisons of the predicted and measured forces as well as surface topography show good agreement.
  • Placeholder
    Publication
    A computational study of drop formation in an axisymmetric flow-focusing device
    (Amer Soc Mechanical Engineers, 2006) Department of Mechanical Engineering; Department of Mechanical Engineering; Filiz, İsmail; Muradoğlu, Metin; N/A; Faculty Member; Department of Mechanical Engineering; College of Engineering; College of Engineering; N/A; 46561
    We investigate the formation and dynamics of drops computationally in an axisymetric geometry using a Front-Tracking/Finite-Difference (FT/FD) method. The effects of viscosity ratio between inner and outer liquids on the drop creation process and drop size distribution are examined. It is found that the viscosity ratio critically influences the drop formation process and the final drop distribution. We found that, for small viscosity ratios, i.e., 0.1 < lambda < 0.5 drop size is about the size of the orifice and drop distribution is highly monodisperse. When viscosity ratio is increased, i.e., 0.5 < lambda < I a smaller drop is created just after the main drop. For even higher viscosity ratios, the drop distribution is usually monodisperse but a satellite drop is created in some cases. The effect of the flow rates in the inner jet and the co flowing annulus are also studied. It is found that the drop size gets smaller as Q(in) / Q(out) is reduced while keeping the outer flow rate constant.
  • Placeholder
    Publication
    Contact mechanics between the human finger and a touchscreen under electroadhesion
    (Natl Acad Sciences, 2018) Scaraggi, Michele; Persson, Bo N. J.; N/A; N/A; Department of Mechanical Engineering; Ayyıldız, Mehmet; Şirin, Ömer; Başdoğan, Çağatay; Researcher; PhD Student; Faculty Member; Department of Mechanical Engineering; Graduate School of Sciences and Engineering; Graduate School of Sciences and Engineering; College of Engineering; N/A; N/A; 125489
    The understanding and control of human skin contact against technological substrates is the key aspect behind the design of several electromechanical devices. Among these, surface haptic displays that modulate the friction between the human finger and touch surface are emerging as user interfaces. One such modulation can be achieved by applying an alternating voltage to the conducting layer of a capacitive touchscreen to control electroadhesion between its surface and the finger pad. However, the nature of the contact interactions between the fingertip and the touchscreen under electroadhesion and the effects of confined material properties, such as layering and inelastic deformation of the stratum corneum, on the friction force are not completely understood yet. Here, we use a mean field theory based on multiscale contact mechanics to investigate the effect of electroadhesion on sliding friction and the dependency of the finger-touchscreen interaction on the applied voltage and other physical parameters. We present experimental results on how the friction between a finger and a touchscreen depends on the electrostatic attraction between them. The proposed model is successfully validated against full-scale (but computationally demanding) contact mechanics simulations and the experimental data. Our study shows that electroadhesion causes an increase in the real contact area at the microscopic level, leading to an increase in the electrovibrating tangential frictional force. We find that it should be possible to further augment the friction force, and thus the human tactile sensing, by using a thinner insulating film on the touchscreen than used in current devices.
  • Placeholder
    Publication
    The effect of strut protrusion on local shear stress and neointimal hyperplasia
    (Oxford University Press (OUP), 2019) Tenekecioglu, E.; Katagiri, Y.; Torii, R.; Onuma, Y.; Serruys, P. W.; Department of Mechanical Engineering; Pekkan, Kerem; Faculty Member; Department of Mechanical Engineering; College of Engineering; 161845
    N/A
  • Placeholder
    Publication
    Dimensional stability of 51CrV4 steel during bainitic phase transformation under tensile and compressive stresses
    (Elsevier, 2010) Lambers H.-G.; Maier H.J.; Department of Mechanical Engineering; Canadinç, Demircan; Faculty Member; Department of Mechanical Engineering; College of Engineering; 23433
    The effect of the prior austenitization treatment on the stress-strain response of a low alloy 51CrV4 steel in its supercooled austenitic state and its effect on the evolution of transformation plasticity strain during a subsequent isothermal bainitic transformation was investigated. One of the key findings is that the prior austenitization treatment strongly affects the evolution of transformation plasticity strains during the subsequent isothermal bainitic transformation under stress, such that higher transformation plasticity strains are present when the austenite grain size is increased. In addition, higher 0.2% offset yield strengths of the supercooled austenite are present following an incomplete austenitization treatment due to the existence of residual carbides. Overall, the current results clearly lay out the effect of the prior austenitization treatment on the stress-strain response of the supercooled austenite and the evolution of transformation plasticity during bainitic transformation.
  • Placeholder
    Publication
    Effect of preservation period on the viscoelastic material properties of soft tissues with implications for liver transplantation
    (Asme, 2010) N/A; N/A; N/A; Department of Mechanical Engineering; Department of Mechanical Engineering; Öcal, Sina; Özcan, Mustafa Umut; Başdoğan, İpek; Başdoğan, Çağatay; Master Student; Master Student; Faculty Member; Faculty Member; Department of Mechanical Engineering; Graduate School of Sciences and Engineering; Graduate School of Sciences and Engineering; College of Engineering; College of Engineering; N/A; N/A; 179940; 125489
    The liver harvested from a donor must be preserved and transported to a suitable recipient immediately for a successful liver transplantation. In this process, the preservation period is the most critical, since it is the longest and most tissue damage occurs during this period due to the reduced blood supply to the harvested liver and the change in its temperature. We investigate the effect of preservation period on the dynamic material properties of bovine liver using a viscoelastic model derived from both impact and ramp and hold experiments. First, we measure the storage and loss moduli of bovine liver as a function of excitation frequency using an impact hammer. Second, its time-dependent relaxation modulus is measured separately through ramp and hold experiments performed by a compression device. Third, a Maxwell solid model that successfully imitates the frequency- and time-dependent dynamic responses of bovine liver is developed to estimate the optimum viscoelastic material coefficients by minimizing the error between the experimental data and the corresponding values generated by the model. Finally, the variation in the viscoelastic material coefficients of bovine liver are investigated as a function of preservation period for the liver samples tested 1 h, 2 h, 4 h, 8 h, 12 h, 24 h, 36 h, and 48 h after harvesting. The results of our experiments performed with three animals show that the liver tissue becomes stiffer and more viscous as it spends more time in the preservation cycle.
  • Placeholder
    Publication
    A front tracking method for direct numerical simulation of evaporation process in a multiphase system
    (Academic Press Inc Elsevier Science, 2017) N/A; N/A; Department of Mechanical Engineering; Irfan, Muhammad; Muradoğlu, Metin; PhD Student; Faculty Member; Department of Mechanical Engineering; Graduate School of Sciences and Engineering; College of Engineering; N/A; 46561
    A front-tracking method is developed for the direct numerical simulation of evaporation process in a liquid-gas multiphase system. One-field formulation is used to solve the flow, energy and species equations in the framework of the front tracking method, with suitable jump conditions at the interface. Both phases are assumed to be incompressible; however, the divergence-free velocity field condition is modified to account for the phase-change/mass-transfer at the interface. Both temperature and species gradient driven evaporation/phase-change processes are simulated. For the species gradient driven phase change process, the Clausius-Clapeyron equilibrium relation is used to find the vapor mass fraction and subsequently the evaporation mass flux at the interface. A number of benchmark cases are first studied to validate the implementation. The numerical results are found to be in excellent agreement with the analytical solutions for all the studied cases. The methods are then applied to study the evaporation of a static as well as a single and two droplets systems falling in the gravitational field. The methods are demonstrated to be grid convergent and the mass is globally conserved during the phase change process for both the static and moving droplet cases.
  • Placeholder
    Publication
    On the cyclic stability and fatigue performance of ultrafine-grained interstitial-free steel under mean stress
    (Trans Tech Publications Ltd, 2008) Niendorf, Thomas; Maier, Hans J.; Karaman, Ibrahim; Department of Mechanical Engineering; Canadinç, Demircan; Faculty Member; Department of Mechanical Engineering; College of Engineering; 23433
    This paper reports on the fatigue performance of an ultrafine-grained (UFG) interstitial-free (IF) steel deformed at various mean stress levels. The UFG microstructure was achieved using equal channel angular extrusion processing at room temperature (RT) and along an "efficient" route, giving way to the formation of high angle grain boundaries (HAGBs) with a high volume fraction. The current study not only confirms the previous finding that a high volume fraction of HAGBs promotes cyclic stability, but also inquires into the role of mean stress level on the cyclic stability. It is shown that the UFG IF steel exhibits a stable cyclic deformation response in the lowcycle fatigue regime within the medium applied mean stress range of -75 to 75 MPa. The corresponding fatigue lives can still be predicted with the Smith-Watson-Topper approach within this range. Furthermore, the present study demonstrates that the evolution of mean strains with cyclic deformation can be linked to the evolution of mean stresses in strain-controlled loading.
  • Placeholder
    Publication
    Multiscale coupling based on quasicontinuum method in nanowires at finite temperatures
    (IEEE, 2015) Sonne, Mads Rostgaard; Hattel, Jesper Henri; N/A; Department of Mechanical Engineering; Esfahani, Mohammad Nasr; Alaca, Burhanettin Erdem; PhD Student; Faculty Member; Department of Mechanical Engineering; Graduate School of Sciences and Engineering; College of Engineering; N/A; 115108
    Nanoelectromechanical systems have been developed for ultra-high frequency oscillators because of their small size and excellent material properties. Using flexural modes and electrothermal features in nanowires for frequency tuning necessitates a sound modeling approach. The quasicontinuum method was developed to link atomistic models with the continuum finite element method in order to study the material behavior across multiple length scales. These significant efforts to develop a continuum theory based on atomistic models have so far been limited to zero temperature. The purpose of this work is to develop the theoretical framework needed to study the mechanical response in nanoscale components such as nanowires at finite temperatures. This is achieved up to a temperature of 1000 K by integrating Engineering Molecular Mechanics and the Cauchy-Born hypothesis. The proposed method is verified with Molecular Dynamics and Molecular Mechanics simulations reported in literature. Bending properties of nanowires at finite temperatures were studied with the proposed method. Thermomechanical properties were investigated by including surface effects.