Publications without Fulltext
Permanent URI for this collectionhttps://hdl.handle.net/20.500.14288/3
Browse
4 results
Search Results
Publication Metadata only Enhancing biocompatibility of NiTi shape memory alloys by simple NH3 treatments(Elsevier, 2020) N/A; N/A; N/A; Department of Chemical and Biological Engineering; Department of Chemistry; Department of Mechanical Engineering; Öztulum, Samira Fatma Kurtoğlu; Yağcı, Mustafa Barış; Uzun, Alper; Ünal, Uğur; Canadinç, Demircan; PhD Student; Researcher; Faculty Member; Faculty Member; Faculty Member; Department of Chemical and Biological Engineering; Department of Chemistry; Department of Mechanical Engineering; Koç University Tüpraş Energy Center (KUTEM) / Koç Üniversitesi Tüpraş Enerji Merkezi (KÜTEM); Koç University Surface Science and Technology Center (KUYTAM) / Koç Üniversitesi Yüzey Teknolojileri Araştırmaları Merkezi (KUYTAM); Graduate School of Sciences and Engineering; N/A; College of Engineering; College of Sciences; College of Engineering; 384798; N/A; 59917; 42079; 23433This paper presents the treatment of NiTi shape memory alloys (SMAs) in flowing ammonia at 700 degrees C as a simple and cost-effective nitriding process to provide a protective surface layer hindering Ni ion release in biological environments. Experimental results demonstrated that a smooth protective TiN layer on the NiTi SMAs along with TiOxNy and TiO2 formed on the surface upon treating the as-received NiTi SMA in ammonia at 700 degrees C. The protective TiN layer and the smooth surface hinder the amount of Ni ion release to artificial saliva (AS) after 28 days of immersion, while the dry air treatment at similar conditions results in a significantly rough surface, leading to about 20 times higher Ni ion release. Overall, the findings presented herein demonstrate that NH3 nitriding is an effective method to eliminate the Ni presence from the surface and to obtain a smooth final surface, which, in turn, restricts the Ni ion release from the NiTi SMA into AS. Consequently, nitriding the surface of NiTi under NH3 at 700 degrees C turned out as a promising method to lower Ni ion release and thereby contribute to the biocompatibility of NiTi SMAs, which, however; needs to be further validated through further experimentation.Publication Metadata only Aerogels for optofluidic waveguides(MDPI, 2017) Jonas, Alexandr; N/A; Department of Physics; Department of Chemical and Biological Engineering; Özbakır, Yaprak; Erkey, Can; Kiraz, Alper; PhD Student; Faculty Member; Faculty Member; Department of Physics; Department of Chemical and Biological Engineering; Graduate School of Sciences and Engineering; College of Sciences; College of Engineering; N/A; 29633; 22542Aerogels-solid materials keeping their internal structure of interconnected submicron-sized pores intact upon exchanging the pore liquid with a gas-were first synthesized in 1932 by Samuel Kistler. Overall, an aerogel is a special form of a highly porous material with a very low solid density and it is composed of individual nano-sized particles or fibers that are connected to form a three-dimensional network. The unique properties of these materials, such as open pores and high surface areas, are attributed to their high porosity and irregular solid structure, which can be tuned through proper selection of the preparation conditions. Moreover, their low refractive index makes them a remarkable solid-cladding material for developing liquid-core optofluidic waveguides based on total internal reflection of light. This paper is a comprehensive review of the literature on the use of aerogels for optofluidic waveguide applications. First, an overview of different types of aerogels and their physicochemical properties is presented. Subsequently, possible techniques to fabricate channels in aerogel monoliths are discussed and methods to make the channel surfaces hydrophobic are described in detail. Studies in the literature on the characterization of light propagation in liquid-filled channels within aerogel monoliths as well as their light-guiding characteristics are discussed. Finally, possible applications of aerogel-based optofluidic waveguides are described.Publication Metadata only A magnetically actuated resonant mass sensor with integrated optical readout(Ieee-Inst Electrical Electronics Engineers Inc, 2008) N/A; N/A; Department of Electrical and Electronics Engineering; N/A; Department of Electrical and Electronics Engineering; Department of Chemical and Biological Engineering; Department of Mechanical Engineering; Öztürk, Alibey; Ocaklı, Hüseyin İlker; Özber, Natali; Ürey, Hakan; Kavaklı, İbrahim Halil; Alaca, Burhanettin Erdem; Master Student; Researcher; Master Student; Faculty Member; Faculty Member; Faculty Member; Department of Electrical and Electronics Engineering; Department of Chemical and Biological Engineering; Department of Mechanical Engineering; Graduate School of Sciences and Engineering; College of Engineering; Graduate School of Sciences and Engineering; College of Engineering; College of Engineering; College of Engineering; N/A; N/A; N/A; 8579; 40319; 115108Nickel cantilevers with integrated diffraction gratings are used as resonant mass sensors with a resolution of 500 femtograms. Their applicability to biosensing is demonstrated with human opioid receptors. The device is fabricated through a single-mask lithographic process. The microoptical readout provides a simple measurement platform with one external photodiode. Thanks to its ac operation principle, the device is immune to environmental noise and entails a high tolerance to fabrication defects. Obtained signal-to-noise ratio is comparable to that of a high-end Doppler vibrometer. The device with these aspects for systems integration and microarray technology is a candidate for low-cost portable sensors.Publication Metadata only Advances in constraint theories of rubber-like elasticity of polymers(Pergamon-Elsevier Science Ltd, 2010) Department of Chemical and Biological Engineering; Erman, Burak; Faculty Member; Department of Chemical and Biological Engineering; College of Engineering; 179997Advances in the constraint theories of rubber elasticity during the past few years, based on the constrained junction, tube, and slip-link models, are cited and discussed. (C) 2009 Elsevier Ltd. All rights reserved.