Publications without Fulltext

Permanent URI for this collectionhttps://hdl.handle.net/20.500.14288/3

Browse

Search Results

Now showing 1 - 10 of 18
  • Placeholder
    Publication
    Large language model-based chatbots in higher education
    (Wiley, 2024) Eryilmaz, Merve; Yetisen, Ail K.; Ozcan, Aydogan; Department of Mechanical Engineering; Yığcı, Defne; Taşoğlu, Savaş; Department of Mechanical Engineering; School of Medicine; College of Engineering
    Large language models (LLMs) are artificial intelligence (AI) platforms capable of analyzing and mimicking natural language processing. Leveraging deep learning, LLM capabilities have been advanced significantly, giving rise to generative chatbots such as Generative Pre-trained Transformer (GPT). GPT-1 was initially released by OpenAI in 2018. ChatGPT's release in 2022 marked a global record of speed in technology uptake, attracting more than 100 million users in two months. Consequently, the utility of LLMs in fields including engineering, healthcare, and education has been explored. The potential of LLM-based chatbots in higher education has sparked significant interest and ignited debates. LLMs can offer personalized learning experiences and advance asynchronized learning, potentially revolutionizing higher education, but can also undermine academic integrity. Although concerns regarding AI-generated output accuracy, the spread of misinformation, propagation of biases, and other legal and ethical issues have not been fully addressed yet, several strategies have been implemented to mitigate these limitations. Here, the development of LLMs, properties of LLM-based chatbots, and potential applications of LLM-based chatbots in higher education are discussed. Current challenges and concerns associated with AI-based learning platforms are outlined. The potentials of LLM-based chatbot use in the context of learning experiences in higher education settings are explored. The use of large language models (LLMs) in higher education can facilitate personalized learning experiences, advance asynchronized learning, and support instructors, students, and researchers across diverse fields. The development of regulations and guidelines that address ethical and legal issues is essential to ensure safe and responsible adaptation of LLM-based tools in real-world educational settings.
  • Placeholder
    Publication
    Experimental estimation of gap thickness and electrostatic forces between contacting surfaces under electroadhesion
    (Wiley, 2024) Martinsen, Orjan Grottem; Pettersen, Fred-Johan; Colgate, James Edward; Department of Mechanical Engineering; Aliabbasi, Easa; Başdoğan, Çağatay; Department of Mechanical Engineering; Graduate School of Sciences and Engineering; College of Engineering
    Electroadhesion (EA) is a promising technology with potential applications in robotics, automation, space missions, textiles, tactile displays, and some other fields where efficient and versatile adhesion is required. However, a comprehensive understanding of the physics behind it is lacking due to the limited development of theoretical models and insufficient experimental data to validate them. This article proposes a new and systematic approach based on electrical impedance measurements to infer the electrostatic forces between two dielectric materials under EA. The proposed approach is applied to tactile displays, where skin and voltage-induced touchscreen impedances are measured and subtracted from the total impedance to obtain the remaining impedance to estimate the electrostatic forces between the finger and the touchscreen. This approach also marks the first instance of experimental estimation of the average air gap thickness between a human finger and a voltage-induced capacitive touchscreen. Moreover, the effect of electrode polarization impedance on EA is investigated. Precise measurements of electrical impedances confirm that electrode polarization impedance exists in parallel with the impedance of the air gap, particularly at low frequencies, giving rise to the commonly observed charge leakage phenomenon in EA. A novel and systematic approach is introduced, leveraging electrical impedance measurements to infer electrostatic forces between two dielectric materials under electroadhesion (EA). This innovative approach holds promise for diverse applications spanning robotics, automation, space missions, textiles, and tactile displays. Furthermore, this study sheds light on the physics of EA, offering valuable insights with implications for the design of electroadhesive devices.
  • Placeholder
    Publication
    Characterization of frequency-dependent material properties of human liver and its pathologies using an impact hammer
    (Elsevier, 2011) Dogusoy, Gulen; Tokat, Yaman; N/A; N/A; Department of Mechanical Engineering; Özcan, Mustafa Umut; Öcal, Sina; Başdoğan, Çağatay; Master Student; Master Student; Faculty Member; Department of Mechanical Engineering; Graduate School of Sciences and Engineering; Graduate School of Sciences and Engineering; College of Engineering; N/A; N/A; 125489
    The current methods for characterization of frequency-dependent material properties of human liver are very limited. In fact, there is almost no data available in the literature showing the variation in dynamic elastic modulus of healthy or diseased human liver as a function of excitation frequency. We show that frequency-dependent dynamic material properties of a whole human liver can be easily and efficiently characterized by an impact hammer. The procedure only involves a light impact force applied to the tested liver by a hand-held hammer. The results of our experiments conducted with 15 human livers harvested from the patients having some form of liver disease show that the proposed approach can successfully differentiate the level of fibrosis in human liver. We found that the storage moduli of the livers having no fibrosis (F0) and that of the cirrhotic livers (F4) varied from 10 to 20 kPa and 20 to 50 kPa for the frequency range of 0-80 Hz, respectively.
  • Placeholder
    Publication
    A monolithic opto-coupler based sensor for contact force detection in artificial hand
    (Ieee, 2016) N/A; N/A; Department of Mechanical Engineering; Shams, Sarmad; Lazoğlu, İsmail; PhD Student; Faculty Member; Department of Mechanical Engineering; Graduate School of Sciences and Engineering; College of Engineering; N/A; 179391
    This paper presents a monolithic opto-coupler based force sensor design to detect the contact forces of the fingertip of the artificial hand during grasp process. Effective and precise measurement of the contact force is always a challenge for the humid and temperature varying environment. In this paper, we propose a novel design of force sensor with optical technique. The optical technique is preferred over other techniques because of its simpler electronics and less immunity to temperature variation under humid environment. Simulation results conducted using Finite Element Method (FEM) analysis confirmed the deflection is linear for the forces from 0 to +/- 100 N. The maximum stress found at 100 N is 252.39 MPa. Also, modal analysis is performed to ensure the sensor is durable and operative while handling different vibrating objects. Calibration experiment of the sensor is performed using multipoint calibration process and curve fitting technique.
  • Placeholder
    Publication
    Sensation: Measuring the effects of a human-to-human social touch based controller on the player experience
    (Assoc Computing Machinery, 2016) N/A; Department of Electrical and Electronics Engineering; Department of Electrical and Electronics Engineering; Department of Electrical and Electronics Engineering; Department of Mechanical Engineering; Department of Computer Engineering; Department of Psychology; N/A; Department of Psychology; Department of Media and Visual Arts; Canat, Mert; Tezcan, Mustafa Ozan; Yurdakul, Celalettin; Tiza, Eran; Sefercik, Buğra Can; Bostan, İdil; Buruk, Oğuz Turan; Göksun, Tilbe; Özcan, Oğuzhan; Undergraduate Student; Undergraduate Student; Undergraduate Student; Undergraduate Student; Undergraduate Student; Undergraduate Student; PhD Student; Faculty Member; Faculty Member; Department of Electrical and Electronics Engineering; Department of Mechanical Engineering; Department of Computer Engineering; Department of Psychology; Department of Media and Visual Arts; KU Arçelik Research Center for Creative Industries (KUAR) / KU Arçelik Yaratıcı Endüstriler Uygulama ve Araştırma Merkezi (KUAR); College of Engineering; College of Engineering; College of Engineering; College of Engineering; College of Engineering; College of Social Sciences and Humanities; Graduate School of Social Sciences and Humanities; College of Social Sciences and Humanities; College of Social Sciences and Humanities; N/A; N/A; N/A; N/A; N/A; N/A; N/A; 47278; 12532
    We observe an increasing interest on usage of full-body interaction in games. However, human-to-human social touch interaction has not been implemented as a sophisticated gaming apparatus. To address this, we designed the Sensation, a device for detecting touch patterns between players, and introduce the game, Shape Destroy, which is a collaborative game designed to be played with social touch. To understand if usage of social touch has a meaningful contribution to the overall player experience in collaborative games we conducted a user study with 30 participants. Participants played the same game using i) the Sensation and ii) a gamepad, and completed a set of questionnaires aimed at measuring the immersion levels. As a result, the collected data and our observations indicated an increase in general, shared, ludic and affective involvement with significant differences. Thus, human-to-human touch can be considered a promising control method for collaborative physical games.
  • Placeholder
    Publication
    Using crowdsourcing for scientific analysis of industrial tomographic images
    (Association for Computing Machinery (ACM), 2016) Chen, Chen; Wozniak, Pawel W.; Romanowski, Andrzej; Jaworski, Tomasz; Kucharski, Jacek; Grudzien, Krzysztof; Zhao, Shengdong; Fjeld, Morten; Department of Mechanical Engineering; Obaid, Mohammad; Undergraduate Student; Department of Mechanical Engineering; KU Arçelik Research Center for Creative Industries (KUAR) / KU Arçelik Yaratıcı Endüstriler Uygulama ve Araştırma Merkezi (KUAR); College of Engineering; N/A
    In this article, we present a novel application domain for human computation, specifically for crowdsourcing, which can help in understanding particle-tracking problems. Through an interdisciplinary inquiry, we built a crowdsourcing system designed to detect tracer particles in industrial tomographic images, and applied it to the problem of bulk solid flow in silos. As images from silo-sensing systems cannot be adequately analyzed using the currently available computational methods, human intelligence is required. However, limited availability of experts, as well as their high cost, motivates employing additional nonexperts. We report on the results of a study that assesses the task completion time and accuracy of employing nonexpert workers to process large datasets of images in order to generate data for bulk flow research. We prove the feasibility of this approach by comparing results from a user study with data generated from a computational algorithm. The study shows that the crowd is more scalable and more economical than an automatic solution. The system can help analyze and understand the physics of flow phenomena to better inform the future design of silos, and is generalized enough to be applicable to other domains.
  • Placeholder
    Publication
    Hapticolor: interpolating color information as haptic feedback to assist the colorblind
    (Assoc Computing Machinery, 2016) Carcedo, Marta G.; Chua, Soon Hau; Perrault, Simon; Wozniak, Pawel; Joshi, Raj; Fjeld, Morten; Zhao, Shengdong; Department of Mechanical Engineering; Obaid, Mohammad; Undergraduate Student; Department of Mechanical Engineering; KU Arçelik Research Center for Creative Industries (KUAR) / KU Arçelik Yaratıcı Endüstriler Uygulama ve Araştırma Merkezi (KUAR); College of Engineering; N/A
    Most existing colorblind aids help their users to distinguish and recognize colors but not compare them. We present HaptiColor, an assistive wristband that encodes discrete color information into spatiotemporal vibrations to support colorblind users to recognize and compare colors. We ran three experiments: the first found the optimal number and placement of motors around the wrist-worn prototype, and the second tested the optimal way to represent discrete points between the vibration motors. Results suggested that using three vibration motors and pulses of varying duration to encode proximity information in spatiotemporal patterns is the optimal solution. Finally, we evaluated the HaptiColor prototype and encodings with six colorblind participants. Our results show that the participants were able to easily understand the encodings and perform color comparison tasks accurately (94.4% to 100%).
  • Placeholder
    Publication
    A monolithic opto-coupler based sensor for contact force detection in artificial hand
    (Institute of Electrical and Electronics Engineers (IEEE), 2016) N/A; Department of Mechanical Engineering; Shams, Sarmad; Lazoğlu, İsmail; PhD Student; Faculty Member; Department of Mechanical Engineering; Manufacturing and Automation Research Center (MARC); Graduate School of Sciences and Engineering; College of Engineering; N/A; 179391
    This paper presents a monolithic opto-coupler based force sensor design to detect the contact forces of the fingertip of the artificial hand during grasp process. Effective and precise measurement of the contact force is always a challenge for the humid and temperature varying environment. In this paper, we propose a novel design of force sensor with optical technique. The optical technique is preferred over other techniques because of its simpler electronics and less immunity to temperature variation under humid environment. Simulation results conducted using Finite Element Method (FEM) analysis confirmed the deflection is linear for the forces from 0 to ±100 N. The maximum stress found at 100 N is 252.39 MPa. Also, modal analysis is performed to ensure the sensor is durable and operative while handling different vibrating objects. Calibration experiment of the sensor is performed using multipoint calibration process and curve fitting technique.
  • Placeholder
    Publication
    A new control architecture for physical human-robot interaction based on haptic communication
    (Ieee, 2014) N/A; N/A; Department of Mechanical Engineering; Aydın, Yusuf; Arghavani, Nasser; Başdoğan, Çağatay; PhD Student; PhD Student; Faculty Member; Department of Mechanical Engineering; Graduate School of Sciences and Engineering; Graduate School of Sciences and Engineering; College of Engineering; 328776; N/A; 125489
    In the near future, humans and robots are expected to perform collaborative tasks involving physical interaction in various different environments such as homes, hospitals, and factories. One important research topic in physical Human-Robot Interaction (pHRI) is to develop tacit and natural haptic communication between the partners. Although there are already several studies in the area of Human-Robot Interaction, the number of studies investigating the physical interaction between the partners and in particular the haptic communication are limited and the interaction in such systems is still artificial when compared to natural human-human collaboration. Although the tasks involving physical interaction such as the table transportation can be planned and executed naturally and intuitively by two humans, there are unfortunately no robots in the market that can collaborate and perform the same tasks with us. In this study, we propose a new controller for the robotic partner that is designed to a) detect the intentions of the human partner through haptic channel using a fuzzy controller b) adjust its contribution to the task via a variable impedance controller and c) resolve the conflicts during the task execution by controlling the internal forces. The results of the simulations performed in Simulink/Matlab show that the proposed controller is superior to the stand-alone standard/variable impedance controllers.
  • Placeholder
    Publication
    Simulations of viscoelastic two-phase flows in complex geometries
    (Elsevier, 2017) N/A; N/A; Department of Mechanical Engineering; Zolfaghari, Hadi; Izbassarov, Daulet; Muradoğlu, Metin; PhD Student; PhD Student; Faculty Member; Department of Mechanical Engineering; Graduate School of Sciences and Engineering; Graduate School of Sciences and Engineering; College of Engineering; N/A; N/A; 46561
    A front-tracking/immersed-boundary (FT/IB) method is developed for direct numerical simulations of viscoelastic two-phase flow systems in complex geometries. One set of governing equations is written for the whole computational domain and different phases are treated as a single fluid with variable material and rheological properties. The interface is tracked explicitly using a Lagrangian grid while the flow equations are solved on a fixed Eulerian grid. An immersed boundary method is used to impose the boundary conditions on arbitrarily-shaped solid walls. The surface tension is computed at the interface using the Lagrangian grid and included into the momentum equations as a body force. The viscoelasticity is accounted for using the FENE-CR model. The viscoelastic model equations are solved fully coupled with the flow equations within the front-tracking framework. The FT/IB method is first validated for a single-phase and a two-phase Newtonian flow problems. Then it is applied to study motion and deformation of a viscoelastic drop in a pressure-driven flow through a capillary tube with a smooth and a sharp-edged constrictions. It is shown that the FT/IB method is robust, second order accurate in space and suitable to simulate viscoelastic two-phase flows interacting with a complex geometry.