Publications without Fulltext

Permanent URI for this collectionhttps://hdl.handle.net/20.500.14288/3

Browse

Search Results

Now showing 1 - 10 of 58
  • Placeholder
    Publication
    End-to-end deep multi-modal physiological authentication with smartbands
    (IEEE-Inst Electrical Electronics Engineers Inc, 2021) Ekiz, Deniz; Dardağan, Yağmur Ceren; Aydar, Furkan; Köse, Rukiye Dilruba; Ersoy, Cem; N/A; Can, Yekta Said; Researcher; College of Social Sciences and Humanities; N/A
    The number of fitness tracker users increases every day. Most of the applications require authentication to protect privacy-preserving operations. Biometrics such as face images have been used widely as login tokens, but they have privacy issues. Moreover, occlusions like face masks used for COVID may reduce their effectiveness. Smartbands can track heart rate, movements, and electrodermal activities. They have been widely used for health-related applications. The use of smartbands for authentication is in the exploratory stage. Physiological signals gathered from smartbands may be used to create a multi-modal and multi-sensor authentication system. The popularity of smartbands enables us to deploy new applications without a need to buy additional hardware. In this study, we explore the multi-modal physiological biometrics with end-to-end deep learning and feature-based traditional systems. We collected multi-modal physiological data of 80 people for five days using modern smartbands. We applied a deep learning approach to the multi-modal physiological data and used feature-based traditional machine learning classifiers. The CNN-LSTM model achieved a 9.31% equal error rate and outperformed other models in terms of authentication performance.
  • Placeholder
    Publication
    Silk as a biodegradable resist for field-emission scanning probe lithography
    (Institute of Physics (IOP) Publishing, 2020) Sadeghi, Sadra; Rangelow, Ivo W.; Department of Mechanical Engineering; Department of Electrical and Electronics Engineering; N/A; N/A; Department of Electrical and Electronics Engineering; Alaca, Burhanettin Erdem; Kumar, Baskaran Ganesh; Melikov, Rustamzhon; Doğru-Yüksel, Itır Bakış; Nizamoğlu, Sedat; Faculty Member; Other; PhD Student; PhD Student; Faculty Member; Department of Mechanical Engineering; Department of Electrical and Electronics Engineering; Koç University Surface Science and Technology Center (KUYTAM) / Koç Üniversitesi Yüzey Teknolojileri Araştirmalari Merkezi (KUYTAM); N/A; N/A; N/A; N/A; College of Engineering; College of Engineering; Graduate School of Sciences and Engineering; Graduate School of Sciences and Engineering; College of Engineering; 115108; N/A; N/A; N/A; 130295
    The patterning of silk allows for manufacturing various structures with advanced functionalities for optical and tissue engineering and drug delivery applications. Here, we propose a high-resolution nanoscale patterning method based on field-emission scanning probe lithography (FE-SPL) that crosslinks the biomaterial silk on conductive indium tin oxide (ITO) promoting the use of a biodegradable material as resist and water as a developer. During the lithographic process, Fowler-Nordheim electron emission from a sharp tip was used to manipulate the structure of silk fibroin from random coil to beta sheet and the emission formed nanoscale latent patterns with a critical dimension (CD) of similar to 50 nm. To demonstrate the versatility of the method, we patterned standard and complex shapes. This method is particularly attractive due to its ease of operation without relying on a vacuum or a special gaseous environment and without any need for complex electronics or optics. Therefore, this study paves a practical and cost-effective way toward patterning biopolymers at ultra-high level resolution.
  • Placeholder
    Publication
    Structural changes in a Schiff base molecular assembly initiated by scanning tunneling microscopy tip
    (Institute of Physics (IOP) Publishing, 2016) Tomak, A.; Bacaksiz, C.; Mendirek, G.; Sahin, H.; Hur, D.; Gorgun, K.; Senger, R. T.; Peeters, F. M.; Zareie, H. M.; N/A; Birer, Özgür; Researcher; Koç University Surface Science and Technology Center (KUYTAM) / Koç Üniversitesi Yüzey Teknolojileri Araştırmaları Merkezi (KUYTAM); N/A; N/A
    We report the controlled self-organization and switching of newly designed Schiff base (E)-4-((4-(phenylethynyl) benzylidene) amino) benzenethiol (EPBB) molecules on a Au (111) surface at room temperature. Scanning tunneling microscopy and spectroscopy (STM/STS) were used to image and analyze the conformational changes of the EPBB molecules. The conformational change of the molecules was induced by using the STM tip while increasing the tunneling current. The switching of a domain or island of molecules was shown to be induced by the STM tip during scanning. Unambiguous fingerprints of the switching mechanism were observed via STM/STS measurements. Surface-enhanced Raman scattering was employed, to control and identify quantitatively the switching mechanism of molecules in a monolayer. Density functional theory calculations were also performed in order to understand the microscopic details of the switching mechanism. These calculations revealed that the molecular switching behavior stemmed from the strong interaction of the EPBB molecules with the STM tip. Our approach to controlling intermolecular mechanics provides a path towards the bottom-up assembly of more sophisticated molecular machines.
  • Placeholder
    Publication
    Modeling and characterization of comb-actuated resonant microscanners
    (Iop Publishing Ltd, 2006) N/A; Department of Electrical and Electronics Engineering; Ataman, Çağlar; Ürey, Hakan; PhD Student; Faculty Member; Department of Electrical and Electronics Engineering; Graduate School of Sciences and Engineering; College of Engineering; N/A; 8579
    The dynamics of the out-of-plane comb-drive actuator used in a torsional resonant mode microscanner is discussed. The microscanner is fabricated using the standard SOI technology by Fraunhofer, IPMS and utilized in various display, barcode scanning, spectroscopy and other imaging applications. The device is a parametrically excited system and exhibits hysteretic frequency response, nonlinear transient response, subharmonic oscillations, multiple parametric resonances, and alternating-oscillation-frequency behavior. Analytical and numerical models are developed to predict the parametric system dynamics. The analytical model is based on the solution of the linear Mathieu equation and valid for small angular displacements. The numerical model is valid for both small and large deflection angles. The analytical and numerical models are validated with the experimental results under various ambient pressures and excitation schemes and successfully predict the dynamics of the parametric nature of the microscanner. As many as four parametric resonances are observed at 30 mTorr. The models developed in this paper can be used to optimize the structure and the actuator.
  • Placeholder
    Publication
    Comb-actuated resonant torsional microscanner with mechanical amplification
    (IEEE-Inst Electrical Electronics Engineers Inc, 2010) Brown, Dean; Davis, Wyatt O.; Department of Electrical and Electronics Engineering; Department of Electrical and Electronics Engineering; N/A; Department of Electrical and Electronics Engineering; Arslan, Aslıhan; Holmstrom, Sven; Gökçe, Sertan Kutal; Ürey, Hakan; Researcher; Researcher; Master Student; Faculty Member; Department of Electrical and Electronics Engineering; College of Engineering; College of Engineering; Graduate School of Sciences and Engineering; College of Engineering; N/A; N/A; N/A; 8579
    A comb-actuated torsional microscanner is developed for high-resolution laser-scanning display systems. Typical torsional comb-drive scanners have fingers placed around the perimeter of the scanning mirror. In contrast, the structure in this paper uses cascaded frames, where the comb fingers are placed on an outer drive frame, and the motion is transferred to the inner mirror frame with a mechanical gain. The structure works only in resonant mode without requiring any offset in the comb fingers, keeping the silicon-on-insulator-based process quite simple. The design intent is to improve actuator efficiency by removing the high-drag fingers from the high-velocity scanning mirror. Placing them on the lower velocity drive frame reduces their contribution to the damping torque. Furthermore, placement on the drive frame allows an increase of the number of fingers and their capacity to impart torque. The microscanner exhibits a parametric response, and as such, the maximum deflection is found when actuated at twice its natural frequency. Analytical formulas are given for the coupled-mode equations and frame deflections. A simple formula is derived for the mechanical-gain factor. For a 1-mm x 1.5-mm oblong scanning mirror, a 76. total optical scan angle is achieved at 21.8 kHz with 196-V peak-to-peak excitation voltages. [2009-0304]
  • Placeholder
    Publication
    A diversity combination model incorporating an inward bias for interaural time-level difference cue integration in sound lateralization
    (MDPI, 2020) N/A; N/A; Department of Computer Engineering; N/A; Mojtahedi, Sina; Erzin, Engin; Ungan, Pekcan; PhD Student; Faculty Member; Faculty Member; Department of Computer Engineering; Graduate School of Sciences and Engineering; College of Engineering; School of Medicine; N/A; 34503; N/A
    A sound source with non-zero azimuth leads to interaural time level differences (ITD and ILD). Studies on hearing system imply that these cues are encoded in different parts of the brain, but combined to produce a single lateralization percept as evidenced by experiments indicating trading between them. According to the duplex theory of sound lateralization, ITD and ILD play a more significant role in low-frequency and high-frequency stimulations, respectively. In this study, ITD and ILD, which were extracted from a generic head-related transfer functions, were imposed on a complex sound consisting of two low- and seven high-frequency tones. Two-alternative forced-choice behavioral tests were employed to assess the accuracy in identifying a change in lateralization. Based on a diversity combination model and using the error rate data obtained from the tests, the weights of the ITD and ILD cues in their integration were determined by incorporating a bias observed for inward shifts. The weights of the two cues were found to change with the azimuth of the sound source. While the ILD appears to be the optimal cue for the azimuths near the midline, the ITD and ILD weights turn to be balanced for the azimuths far from the midline.
  • Placeholder
    Publication
    Uncooled thermo-mechanical detector array with optical readout
    (Walter De Gruyter Gmbh, 2006) N/A; N/A; Department of Electrical and Electronics Engineering; Torun, Hamdi; Ürey, Hakan; Master Student; Faculty Member; Department of Electrical and Electronics Engineering; Graduate School of Sciences and Engineering; College of Engineering; N/A; 8579
    This paper reports a novel uncooled infrared FPA whose performance is comparable to the cooled FPA's in terms of noise parameters. FPA consists of bimaterial microcantilever structures that are designed to convert IR radiation energy into mechanical energy. Induced deflection by mechanical energy is detected by means of optical methods that measure sub nanometer thermally induced deflections. Analytical solutions are developed for calculating the figure of merits for the FPA. FEM simulations and the analytical solution agree well. Calculations show that for an FPA, NETD of < 5 mK is achievable in the 8-12 pm band. The design and optimization for the detectors are presented. The mechanical structure of pixels is designed such that it can be possible to form large array size FPA's. Microfabrication of the devices to improve the performance further; employs low cost standard MEMS processes.
  • Placeholder
    Publication
    Experimental investigation of stub resonators built in plasmonic slot waveguides
    (Ieee-Inst Electrical Electronics Engineers Inc, 2017) Karasahin, Aziz; N/A; N/A; Department of Electrical and Electronics Engineering; N/A; Naghizadeh, Solmaz; Kocabaş, Şükrü Ekin; Arısev, Ongun; PhD Student; PhD Student; Faculty Member; Master Student; Department of Electrical and Electronics Engineering; Graduate School of Sciences and Engineering; Graduate School of Sciences and Engineering; College of Engineering; Graduate School of Sciences and Engineering; N/A; N/A; N/A; N/A
    In this letter, we focus on stub resonators embedded in plasmonic slot waveguides. The resonators have potential applications in optical interconnects and sensors. We fabricate the samples by electron beam lithography and lift-off. We use a scattering matrix-based model to quantify the optical power output from the samples. We measure the properties of the resonators by coupling light in and out of the slot waveguides by optical antennas, making use of a cross-polarization-based setup utilizing a supercontinuum source and a high numerical aperture objective lens operating in the telecom-wavelength range. Our model agrees well with the measured data. Furthermore, development on the stub resonators can be made by using the methods in this letter.
  • Placeholder
    Publication
    On heat transfer at microscale with implications for microactuator design
    (Iop Publishing Ltd, 2009) Yalçınkaya, Arda D.; Zervas, Michalis; Leblebici, Yusuf; N/A; Department of Mechanical Engineering; N/A; Özsun, Özgür; Alaca, Burhanettin Erdem; Yılmaz, Mehmet; Master Student; Faculty Member; Master Student; Department of Mechanical Engineering; Graduate School of Sciences and Engineering; College of Engineering; Graduate School of Sciences and Engineering; N/A; 115108; N/A
    The dominance of conduction and the negligible effect of gravity, and hence free convection, are verified in the case of microscale heat sources surrounded by air at atmospheric pressure. A list of temperature-dependent heat transfer coefficients is provided. In contrast to previous approaches based on free convection, supplied coefficients converge with increasing temperature. Instead of creating a new external function for the definition of boundary conditions via conductive heat transfer, convective thin film coefficients already embedded in commercial finite element software are utilized under a constant heat flux condition. This facilitates direct implementation of coefficients, i. e. the list supplied in this work can directly be plugged into commercial software. Finally, the following four-step methodology is proposed for modeling: (i) determination of the thermal time constant of a specific microactuator, (ii) determination of the boundary layer size corresponding to this time constant, (iii) extraction of the appropriate heat transfer coefficients from a list provided and (iv) application of these coefficients as boundary conditions in thermomechanical finite element simulations. An experimental procedure is established for the determination of the thermal time constant, the first step of the proposed methodology. Based on conduction, the proposed method provides a physically sound solution to heat transfer issues encountered in the modeling of thermal microactuators.
  • Placeholder
    Publication
    Ray tracing-based maritime channel analysis for millimeter radiowaves
    (Springer, 2019) Ozdemir, Mehmet Kemal; N/A; Mehrnia, Niloofar; PhD Student; Graduate School of Sciences and Engineering; N/A
    In this work, we present and analyze the simulation results of millimeter-wave propagation channel performed over the sea surface for ship to ship scenario. We present a channel characterization study where channel parameters such as path loss, received power, root mean square delay spread, and power delay profile are inspected by taking the ray tracing advantages of the Wireless InSite software. 35 GHz and 94 GHz are the bands of interest, as they have minimum water and oxygen attenuation and their performances in practice would be the best among the other frequency bands. In our study, we investigate the effect of ray spacing, Earth's curvature, and the sea surface roughness on marine channel characteristics. Our results demonstrate that 2-ray analytical model should be only used for some short ranges over the sea surface propagating at high frequencies. Besides, free-space path loss model cannot predict the behavior of channel over the sea surface in high frequencies even for the short ranges. Therefore, a new path loss model is proposed to compensate the defects of existing path loss models by the means of changing the reflection coefficient and modifying the original 2-ray path loss model. This proposed model is able to better follow the simulated or measured propagation loss with less error, when it is compared with Free Space and 2-ray path loss models. Hence, this new model can be used for the path loss calculations at the mentioned frequencies especially for large distances between transmitter and receiver.