Publications without Fulltext

Permanent URI for this collectionhttps://hdl.handle.net/20.500.14288/3

Browse

Search Results

Now showing 1 - 7 of 7
  • Placeholder
    Publication
    Structural changes in a Schiff base molecular assembly initiated by scanning tunneling microscopy tip
    (Institute of Physics (IOP) Publishing, 2016) Tomak, A.; Bacaksiz, C.; Mendirek, G.; Sahin, H.; Hur, D.; Gorgun, K.; Senger, R. T.; Peeters, F. M.; Zareie, H. M.; N/A; Birer, Özgür; Researcher; Koç University Surface Science and Technology Center (KUYTAM) / Koç Üniversitesi Yüzey Teknolojileri Araştırmaları Merkezi (KUYTAM); N/A; N/A
    We report the controlled self-organization and switching of newly designed Schiff base (E)-4-((4-(phenylethynyl) benzylidene) amino) benzenethiol (EPBB) molecules on a Au (111) surface at room temperature. Scanning tunneling microscopy and spectroscopy (STM/STS) were used to image and analyze the conformational changes of the EPBB molecules. The conformational change of the molecules was induced by using the STM tip while increasing the tunneling current. The switching of a domain or island of molecules was shown to be induced by the STM tip during scanning. Unambiguous fingerprints of the switching mechanism were observed via STM/STS measurements. Surface-enhanced Raman scattering was employed, to control and identify quantitatively the switching mechanism of molecules in a monolayer. Density functional theory calculations were also performed in order to understand the microscopic details of the switching mechanism. These calculations revealed that the molecular switching behavior stemmed from the strong interaction of the EPBB molecules with the STM tip. Our approach to controlling intermolecular mechanics provides a path towards the bottom-up assembly of more sophisticated molecular machines.
  • Placeholder
    Publication
    On heat transfer at microscale with implications for microactuator design
    (Iop Publishing Ltd, 2009) Yalçınkaya, Arda D.; Zervas, Michalis; Leblebici, Yusuf; N/A; Department of Mechanical Engineering; N/A; Özsun, Özgür; Alaca, Burhanettin Erdem; Yılmaz, Mehmet; Master Student; Faculty Member; Master Student; Department of Mechanical Engineering; Graduate School of Sciences and Engineering; College of Engineering; Graduate School of Sciences and Engineering; N/A; 115108; N/A
    The dominance of conduction and the negligible effect of gravity, and hence free convection, are verified in the case of microscale heat sources surrounded by air at atmospheric pressure. A list of temperature-dependent heat transfer coefficients is provided. In contrast to previous approaches based on free convection, supplied coefficients converge with increasing temperature. Instead of creating a new external function for the definition of boundary conditions via conductive heat transfer, convective thin film coefficients already embedded in commercial finite element software are utilized under a constant heat flux condition. This facilitates direct implementation of coefficients, i. e. the list supplied in this work can directly be plugged into commercial software. Finally, the following four-step methodology is proposed for modeling: (i) determination of the thermal time constant of a specific microactuator, (ii) determination of the boundary layer size corresponding to this time constant, (iii) extraction of the appropriate heat transfer coefficients from a list provided and (iv) application of these coefficients as boundary conditions in thermomechanical finite element simulations. An experimental procedure is established for the determination of the thermal time constant, the first step of the proposed methodology. Based on conduction, the proposed method provides a physically sound solution to heat transfer issues encountered in the modeling of thermal microactuators.
  • Placeholder
    Publication
    Reactivity zones around an atmospheric pressure plasma jet
    (Elsevier Science Bv, 2015) N/A; Birer, Özgür; Resercher; Koç University Surface Science and Technology Center (KUYTAM) / Koç Üniversitesi Yüzey Teknolojileri Araştırmaları Merkezi (KUYTAM); N/A; N/A
    The reactivity zones around an atmospheric pressure plasma jet are revealed by XPS mapping of chemical moieties on a polyethylene surface treated with a 3-mm plasma jet. The area directly hit by the helium plasma jet initially oxidizes and later etches away as the plasma treatment continues. The oxidation initially starts at the center and expands outwards as a ring pattern with different spatial potency. At the end of 10 min plasma jet treatment, distinct ring patterns for -NO, -COO, -CO and -NO3 species can be detected with respectively increasing diameters. The plasma jet can cause chemical changes at locations several millimeters away from the center. The spatial distribution of oxidized species suggests presence of chemical reactivity zones. Introduction of nitrogen into the helium plasma jet, not only increases the type of nitrogen moieties, but enriches the reactivity zones by generating nitrogen molecular ions within the plasma jet. The complex competing reaction mechanisms among the radicals, ions, metastable atoms and UV photons lead to unusual etching patterns on the surfaces. (C) 2015 Elsevier B.V. All rights reserved.
  • Placeholder
    Publication
    A deformation-based approach to tuning of magnetic micromechanical resonators
    (2018) Yalçınkaya, Arda D.; Department of Mechanical Engineering; N/A; Department of Mechanical Engineering; Biçer, Mahmut; Esfahani, Mohammad Nasr; Alaca, Burhanettin Erdem; Researcher; PhD Student; Faculty Member; Department of Mechanical Engineering; Koç University Surface Science and Technology Center (KUYTAM) / Koç Üniversitesi Yüzey Teknolojileri Araştırmaları Merkezi (KUYTAM); College of Engineering; Graduate School of Sciences and Engineering; College of Engineering; N/A; N/A; 115108
    Resonance frequency tuning in magnetic micromechanical resonators remains a primary field of study for frequency reference applications. The use of magnetic micromechanical resonators for innovative timing, oscillator and sensing applications necessitates a platform for the precise control of the resonance frequency. The present work addresses a deformation based technique for tuning the resonance frequency of nickel micromechanical resonators. Frequency response is measured through magnetic actuation and optical readout. The tuning approach is based on a combination of flexural deformation and uniaxial strain. The bending deformation is achieved by using a DC current through the microbeam. This magnetomotive mechanism reduces the resonance frequency by about 13% for a maximum DC current of 80 mA. A substrate bending method is used for applying uniaxial strain to increase the resonance frequency by about 8%. A bidirectional frequency modulation is thus demonstrated by utilizing both deformation techniques. The interpretation of results is carried out by finite element analysis and electromechanical analogy in an equivalent circuit. Using deformation techniques, this study provides a rigorous approach to control the resonance frequency of magnetic micromechanical resonators.
  • Placeholder
    Publication
    An electrochemical gelation method for patterning conductive PEDOT:PSS hydrogels
    (2019) Feig, Vivian Rachel; Tran, Helen; Lee, Minah; Liu, Kathy; Huang, Zhuojun; Mackanic, David G.; Bao, Zhenan; Department of Mechanical Engineering; Beker, Levent; Faculty Member; Department of Mechanical Engineering; College of Engineering; 308798
    Due to their high water content and macroscopic connectivity, hydrogels made from the conducting polymer PEDOT:PSS are a promising platform from which to fabricate a wide range of porous conductive materials that are increasingly of interest in applications as varied as bioelectronics, regen-erative medicine, and energy storage. Despite the promising properties of PEDOT:PSS-based porous materials, the ability to pattern PEDOT:PSS hydrogels is still required to enable their integration with multifunctional and multichannel electronic devices. In this work, a novel electrochemical gelation (“electrogelation”) method is presented for rapidly patterning PEDOT:PSS hydrogels on any conductive template, including curved and 3D surfaces. High spatial resolution is achieved through use of a sacrificial metal layer to generate the hydrogel pattern, thereby enabling high-performance conducting hydrogels and aerogels with desirable material properties to be introduced into increasingly complex device architectures
  • Placeholder
    Publication
    Piezoresistive silicon nanowire resonators as embedded building blocks in thick SOI
    (Iop Publishing Ltd, 2018) Karakan, M. Çağatay; Orhan, Ezgi; Hanay, M. Selim; Leblebici, Yusuf; N/A; N/A; Department of Mechanical Engineering; Esfahani, Mohammad Nasr; Kılınç, Yasin; Alaca, Burhanettin Erdem; PhD Student; PhD Student; Faculty Member; Department of Mechanical Engineering; Koç University Surface Science and Technology Center (KUYTAM) / Koç Üniversitesi Yüzey Teknolojileri Araştırmaları Merkezi (KUYTAM); Graduate School of Sciences and Engineering; College of Engineering; College of Engineering; N/A; N/A; 115108
    The use of silicon nanowire resonators in nanoelectromechanical systems for new-generation sensing and communication devices faces integration challenges with higher-order structures. Monolithic and deterministic integration of such nanowires with the surrounding microscale architecture within the same thick crystal is a critical aspect for the improvement of throughput, reliability and device functionality. A monolithic and IC-compatible technology based on a tuned combination of etching and protection processes was recently introduced yielding silicon nanowires within a 10 mu m-thick device layer. Motivated by its success, the implications of the technology regarding the electromechanical resonance are studied within a particular setting, where the resonator is co-fabricated with all terminals and tuning electrodes. Frequency response is measured via piezoresistive readout with frequency down-mixing. Measurements indicate mechanical resonance with frequencies as high as 100 MHz exhibiting a Lorentzian behavior with proper transition to nonlinearity, while Allan deviation on the order of 3-8 ppm is achieved. Enabling the fabrication of silicon nanowires in thick silicon crystals using conventional semiconductor manufacturing, the present study thus demonstrates an alternative pathway to bottom-up and thin silicon-on-insulator approaches for silicon nanowire resonators.
  • Placeholder
    Publication
    Role of different plasma gases on the surface chemistry and wettability of RF plasma treated stainless steel
    (Pergamon-Elsevier Science Ltd, 2016) Sonmez, Toygan; Jadidi, M. Fazeli; Kazmanli, Kursat; Urgen, Mustafa; N/A; Birer, Özgür; Researcher; Koç University Surface Science and Technology Center (KUYTAM) / Koç Üniversitesi Yüzey Teknolojileri Araştırmaları Merkezi (KUYTAM); N/A; N/A
    Vacuum radio frequency (RF) plasma treatment was conducted on electropolished and passivated 316 LVM stainless steel (SS) surface by using Ar and O-2. Contact angle measurements revealed that both Ar and O-2 plasma treatments significantly increased the wettability of the SS surface by water. The physical and chemical effects induced by Ar and O-2 plasma on SS were investigated via Atomic Force Microscopy (AFM) and X-ray Photoelectron Spectroscopy (XPS). AFM analysis revealed that plasma process exerted similar effects on surface roughness and topography. Both Ar and O-2 plasma treatments resulted in smoother surface when compared to reference electropolished sample. XPS investigations of the surfaces with respect to Fe2p, Cr2p, Mo3d and O1s XPS spectra showed that the main role of Ar plasma was thinning of the oxide-hydroxide layer along with the removal of contamination without any definitive difference on the valence states of metal compounds. On the other hand, O-2 plasma treatment resulted in. thickening of oxide layer along with oxidation of the species to their highest valence states (CrVI, FeIII and MoVe. After washing the plasma treated surfaces with water, contact angles for oxygen plasma treated samples increased dramatically indicating the substantial role of higher valent oxides on wetting process. (C) 2016 Elsevier Ltd. All rights reserved.