Publications with Fulltext
Permanent URI for this collectionhttps://hdl.handle.net/20.500.14288/6
Browse
Publication Open Access 25-hydroxyvitamin D levels are low but not associated with disease activity in chronic spontaneous urticaria and depression(AEPress, 2020) Vurgun, Eren; Güntaş, Gürkan; Kocatürk Göncü, Özgür Emek; Memet, Bachar; Doctor; School of Medicine; Koç University Hospital; 217219; N/AAim: to evaluate vitamin D levels in patients with chronic spontaneous urticaria (CSU), depression and both of them, thus to fi nd out whether vitamin D may be a common causative factor of CSU and depression. Methods: thirty patients with CSU, 30 patients with depression, 30 patients with both CSU and depression and 30 healthy volunteers as control group were involved in the study. Serum 25-hydroxyvitamin D (25(OH) D) levels of these groups were measured and compared. Correlations between 25(OH)D levels and the activity of CSU and depression were analyzed. Results: healthy controls' 25(OH)D levels (17.2±8.8 ng/mL) were higher than patients with CSU (9.1±5.1 ng/mL), depression (8.9±6.1 ng/mL) and CSU with depression (7.7±4.7 ng/mL) (p<0.001, p<0.001 and p<0.001, respectively). There were no differences in 25(OH)D levels between CSU patients with and without depression, between depression patients and CSU patients with and without depression (p=0.43, p=0.82 and p=0.92, respectively). There were no correlations between 25(OH)D levels and the activity of CSU or depression (p=0.99 and p=0.76, respectively). Conclusion: Lower 25(OH)D levels in CSU and/or depression may appear as a secondary phenomenon, which means being result of these diseases rather than the cause (Tab. 1, Fig. 2, Ref. 41).Publication Open Access 2D hybrid meshes for direct simulation Monte Carlo solvers(Institute of Physics (IOP) Publishing, 2013) Şengil, Nevsan; Department of Mathematics; Department of Mathematics; Şengil, Uluç; Master Student; College of SciencesThe efficiency of the direct simulation Monte Carlo (DSMC) method decreases considerably if gas is not rarefied. In order to extend the application range of the DSMC method towards non-rarefied gas regimes, the computational efficiency of the DSMC method should be increased further. One of the most time consuming parts of the DSMC method is to determine which DSMC molecules are in close proximity. If this information is calculated quickly, the efficiency of the DSMC method will be increased. Although some meshless methods are proposed, mostly structured or non-structured meshes are used to obtain this information. The simplest DSMC solvers are limited with the structured meshes. In these types of solvers, molecule indexing according to the positions can be handled very fast using simple arithmetic operations. But structured meshes are geometry dependent. Complicated geometries require the use of unstructured meshes. In this case, DSMC molecules are traced cell-by-cell. Different cell-by-cell tracing techniques exist. But, these techniques require complicated trigonometric operations or search algorithms. Both techniques are computationally expensive. In this study, a hybrid mesh structure is proposed. Hybrid meshes are both less dependent on the geometry like unstructured meshes and computationally efficient like structured meshes.Publication Open Access 3D engineered neural co-culture model and neurovascular effects of marine fungi-derived citreohybridonol(American Institute of Physics (AIP) Publishing, 2022) Polat, İrem; Özkaya, Ferhat Can; El-Neketi, Mona; Ebrahim, Weaam; Şengül, Gülgün; Department of Mechanical Engineering; Department of Mechanical Engineering; Sokullu, Emel; Sarabi, Misagh Rezapour; Taşoğlu, Savaş; Faculty Member; Faculty Member; Koç University Research Center for Translational Medicine (KUTTAM) / Koç Üniversitesi Translasyonel Tıp Araştırma Merkezi (KUTTAM); Koç Üniversitesi İş Bankası Yapay Zeka Uygulama ve Araştırma Merkezi (KUIS AI)/ Koç University İş Bank Artificial Intelligence Center (KUIS AI); KU Arçelik Research Center for Creative Industries (KUAR) / KU Arçelik Yaratıcı Endüstriler Uygulama ve Araştırma Merkezi (KUAR); School of Medicine; Graduate School of Sciences and Engineering; College of Engineering; 163024; N/A; 291971Marine-based biomolecules are emerging metabolites that have gained attention for developing novel biomaterials, drugs, and pharmaceutical in vitro platforms. Here, we developed a 3D engineered neural co-culture model via a 3D prototyped sliding frame-platform for multi-step UV lithography and investigated the neurovascular potential of citreohybridonol in neuroblastoma treatment. Citreohybridonol was isolated from a sponge-derived fungus Penicillium atrovenetum. The model was characterized by Fourier-transform infrared spectroscopy and scanning electron microscopy analysis. Human umbilical cord vein endothelial cells (HUVECs) and neuroblastoma (SH-SY5Y) cell lines were encapsulated in gelatin methacrylate (GelMA) with and without citreohybridonol. The effect of citreohybridonol on the proliferation capacity of cells was assessed via cell viability and immunostaining assays. GelMA and 3D culture characterization indicated that the cells were successfully encapsulated as axenic and mixed with/without citreohybridonol. The cytotoxic test confirmed that the 3D microenvironment was non-toxic for cultural experiments, and it showed the inhibitory effects of citreohybridonol on SH-SY5Y cells and induced the proliferation of HUVECs. Finally, immunohistochemical staining demonstrated that citreohybridonol suppressed SH-SY5Y cells and induced vascularization of HUVECs in mixed 3D cell culture.Publication Open Access 3D face recognition by projection based methods(Society of Photo-optical Instrumentation Engineers (SPIE), 2006) Dutaǧaci, Helin; Sankur, Bülent; Department of Computer Engineering; Department of Computer Engineering; Yemez, Yücel; Faculty Member; College of EngineeringIn this paper, we investigate recognition performances of various projection-based features applied on registered 3D scans of faces. Some features are data driven, such as ICA-based features or NNMF-based features. Other features are obtained using DFT or DCT-based schemes. We apply the feature extraction techniques to three different representations of registered faces, namely, 3D point clouds, 2D depth images and 3D voxel. We consider both global and local features. Global features are extracted from the whole face data, whereas local features are computed over the blocks partitioned from 2D depth images. The block-based local features are fused both at feature level and at decision level. The resulting feature vectors are matched using Linear Discriminant Analysis. Experiments using different combinations of representation types and feature vectors are conducted on the 3D-RMA dataset.Publication Open Access 3D printed microneedles for point of care biosensing applications(Multidisciplinary Digital Publishing Institute (MDPI), 2022) Department of Mechanical Engineering; Department of Mechanical Engineering; Sarabi, Misagh Rezapour; Nakhjavani, Sattar Akbar; Taşoğlu, Savaş; Faculty Member; Koç University Research Center for Translational Medicine (KUTTAM) / Koç Üniversitesi Translasyonel Tıp Araştırma Merkezi (KUTTAM); KU Arçelik Research Center for Creative Industries (KUAR) / KU Arçelik Yaratıcı Endüstriler Uygulama ve Araştırma Merkezi (KUAR); Koç Üniversitesi İş Bankası Yapay Zeka Uygulama ve Araştırma Merkezi (KUIS AI)/ Koç University İş Bank Artificial Intelligence Center (KUIS AI); Graduate School of Sciences and Engineering; College of Engineering; N/A; N/A; 291971Microneedles (MNs) are an emerging technology for user-friendly and minimally invasive injection, offering less pain and lower tissue damage in comparison to conventional needles. With their ability to extract body fluids, MNs are among the convenient candidates for developing biosensing setups, where target molecules/biomarkers are detected by the biosensor using the sample collected with the MNs. Herein, we discuss the 3D printing of microneedle arrays (MNAs) toward enabling point-of-care (POC) biosensing applications.Publication Open Access 3D printed personalized magnetic micromachines from patient blood-derived biomaterials(American Association for the Advancement of Science (AAAS), 2021) Ceylan, Hakan; Doğan, Nihal Olcay; Yaşa, İmmihan Ceren; Department of Mechanical Engineering; Department of Mechanical Engineering; Sitti, Metin; Musaoğlu, Miraç Nur; Kulalı, Zeynep Umut; Faculty Member; College of Engineering; School of Medicine; 297104; N/A; N/AWhile recent wireless micromachines have shown increasing potential for medical use, their potential safety risks concerning biocompatibility need to be mitigated. They are typically constructed from materials that are not intrinsically compatible with physiological environments. Here, we propose a personalized approach by using patient blood-derivable biomaterials as the main construction fabric of wireless medical micromachines to alleviate safety risks from biocompatibility. We demonstrate 3D printed multiresponsive microswimmers and microrollers made from magnetic nanocomposites of blood plasma, serum albumin protein, and platelet lysate. These micro-machines respond to time-variant magnetic fields for torque-driven steerable motion and exhibit multiple cycles of pH-responsive two-way shape memory behavior for controlled cargo delivery and release applications. Their proteinaceous fabrics enable enzymatic degradability with proteinases, thereby lowering risks of long-term toxicity. The personalized micromachine fabrication strategy we conceptualize here can affect various future medical robots and devices made of autologous biomaterials to improve biocompatibility and smart functionality.Publication Open Access 3D printing of elastomeric bioinspired complex adhesive microstructures(Wiley, 2021) Dayan, Cem Balda; Chun, Sungwoo; Krishna Subbaiah, Nagaraj; Drotlef, Dirk Michael; Akolpoğlu, Mükrime Birgül; Department of Mechanical Engineering; Department of Mechanical Engineering; Sitti, Metin; Faculty Member; College of Engineering; School of Medicine; 297104Bioinspired elastomeric structural adhesives can provide reversible and controllable adhesion on dry/wet and synthetic/biological surfaces for a broad range of commercial applications. Shape complexity and performance of the existing structural adhesives are limited by the used specific fabrication technique, such as molding. To overcome these limitations by proposing complex 3D microstructured adhesive designs, a 3D elastomeric microstructure fabrication approach is implemented using two-photon-polymerization-based 3D printing. A custom aliphatic urethane-acrylate-based elastomer is used as the 3D printing material. Two designs are demonstrated with two combined biological inspirations to show the advanced capabilities enabled by the proposed fabrication approach and custom elastomer. The first design focuses on springtail- and gecko-inspired hybrid microfiber adhesive, which has the multifunctionalities of side-surface liquid super-repellency, top-surface liquid super-repellency, and strong reversible adhesion features in a single fiber array. The second design primarily centers on octopus- and gecko-inspired hybrid adhesive, which exhibits the benefits of both octopus- and gecko-inspired microstructured adhesives for strong reversible adhesion on both wet and dry surfaces, such as skin. This fabrication approach could be used to produce many other 3D complex elastomeric structural adhesives for future real-world applications.Publication Open Access 3D spatial organization and network-guided comparison of mutation profiles in Glioblastoma reveals similarities across patients(Public Library of Science, 2019) Dinçer, Cansu; Kaya, Tuğba; Tunçbağ, Nurcan; Department of Chemical and Biological Engineering; Department of Computer Engineering; Department of Chemical and Biological Engineering; Department of Computer Engineering; Keskin, Özlem; Gürsoy, Attila; Faculty Member; Koç University Research Center for Translational Medicine (KUTTAM) / Koç Üniversitesi Translasyonel Tıp Araştırma Merkezi (KUTTAM); College of Engineering; 26605; 8745Glioblastoma multiforme (GBM) is the most aggressive type of brain tumor. Molecular heterogeneity is a hallmark of GBM tumors that is a barrier in developing treatment strategies. In this study, we used the nonsynonymous mutations of GBM tumors deposited in The Cancer Genome Atlas (TCGA) and applied a systems level approach based on biophysical characteristics of mutations and their organization in patient-specific subnetworks to reduce inter-patient heterogeneity and to gain potential clinically relevant insights. Approximately 10% of the mutations are located in "patches" which are defined as the set of residues spatially in close proximity that are mutated across multiple patients. Grouping mutations as 3D patches reduces the heterogeneity across patients. There are multiple patches that are relatively small in oncogenes, whereas there are a small number of very large patches in tumor suppressors. Additionally, different patches in the same protein are often located at different domains that can mediate different functions. We stratified the patients into five groups based on their potentially affected pathways, revealed from the patient-specific subnetworks. These subnetworks were constructed by integrating mutation profiles of the patients with the interactome data. Network-guided clustering showed significant association between each group and patient survival (P-value = 0.0408). Also, each group carries a set of signature 3D mutation patches that affect predominant pathways. We integrated drug sensitivity data of GBM cell lines with the mutation patches and the patient groups to analyze the therapeutic outcome of these patches. We found that Pazopanib might be effective in Group 3 by targeting CSF1R. Additionally, inhibiting ATM that is a mediator of PTEN phosphorylation may be ineffective in Group 2. We believe that from mutations to networks and eventually to clinical and therapeutic data, this study provides a novel perspective in the network-guided precision medicine.Publication Open Access 3D-printed microneedles in biomedical applications(Elsevier, 2021) Rahbarghazi, Reza; Yetişen, Ali Kemal; N/A; Department of Mechanical Engineering; Department of Mechanical Engineering; Dabbagh, Sajjad Rahmani; Sarabi, Misagh Rezapour; Sokullu, Emel; Taşoğlu, Savaş; Faculty Member; Faculty Member; KU Arçelik Research Center for Creative Industries (KUAR) / KU Arçelik Yaratıcı Endüstriler Uygulama ve Araştırma Merkezi (KUAR); Koç University Research Center for Translational Medicine (KUTTAM) / Koç Üniversitesi Translasyonel Tıp Araştırma Merkezi (KUTTAM); Graduate School of Social Sciences and Humanities; Graduate School of Sciences and Engineering; School of Medicine; College of Engineering; N/A; N/A; 163024; 291971Conventional needle technologies can be advanced with emerging nano- and micro-fabrication methods to fabricate microneedles. Nano-/micro-fabricated microneedles seek to mitigate penetration pain and tissue damage, as well as providing accurately controlled robust channels for administrating bioagents and collecting body fluids. Here, design and 3D printing strategies of microneedles are discussed with emerging applications in biomedical devices and healthcare technologies. 3D printing offers customization, cost-efficiency, a rapid turnaround time between design iterations, and enhanced accessibility. Increasing the printing resolution, the accuracy of the features, and the accessibility of low-cost raw printing materials have empowered 3D printing to be utilized for the fabrication of microneedle platforms. The development of 3D-printed microneedles has enabled the evolution of pain-free controlled release drug delivery systems, devices for extracting fluids from the cutaneous tissue, biosignal acquisition, and point-of-care diagnostic devices in personalized medicine.Publication Open Access 3D-printed microrobots from design to translation(Nature Portfolio, 2022) Department of Mechanical Engineering; N/A; Department of Mechanical Engineering; Dabbagh, Sajjad Rahmani; Sarabi, Misagh Rezapour; Birtek, Mehmet Tuğrul; Sitti, Metin; Taşoğlu, Savaş; Faculty Member; Faculty Member; KU Arçelik Research Center for Creative Industries (KUAR) / KU Arçelik Yaratıcı Endüstriler Uygulama ve Araştırma Merkezi (KUAR); Koç Üniversitesi İş Bankası Yapay Zeka Uygulama ve Araştırma Merkezi (KUIS AI)/ Koç University İş Bank Artificial Intelligence Center (KUIS AI); Koç University Research Center for Translational Medicine (KUTTAM) / Koç Üniversitesi Translasyonel Tıp Araştırma Merkezi (KUTTAM); Graduate School of Health Sciences; Graduate School of Sciences and Engineering; School of Medicine; College of Engineering; N/A; N/A; N/A; N/A; 297104; 291971Microrobots have attracted the attention of scientists owing to their unique features to accomplish tasks in hard-to-reach sites in the human body. Microrobots can be precisely actuated and maneuvered individually or in a swarm for cargo delivery, sampling, surgery, and imaging applications. In addition, microrobots have found applications in the environmental sector (e.g., water treatment). Besides, recent advancements of three-dimensional (3D) printers have enabled the high-resolution fabrication of microrobots with a faster design-production turnaround time for users with limited micromanufacturing skills. Here, the latest end applications of 3D printed microrobots are reviewed (ranging from environmental to biomedical applications) along with a brief discussion over the feasible actuation methods (e.g., on- and off-board), and practical 3D printing technologies for microrobot fabrication. In addition, as a future perspective, we discussed the potential advantages of integration of microrobots with smart materials, and conceivable benefits of implementation of artificial intelligence (AI), as well as physical intelligence (PI). Moreover, in order to facilitate bench-to-bedside translation of microrobots, current challenges impeding clinical translation of microrobots are elaborated, including entry obstacles (e.g., immune system attacks) and cumbersome standard test procedures to ensure biocompatibility.Publication Open Access A 19-year-old pregnant woman with pulmonary hypertension with progressive dyspnea(Elsevier, 2021) Avcı, Burçak Kılıçkıran; Tok, Özge Özden; Öngen, Zeki; Bozkaya, Tijen Alkan; Kalangos, Afksendiyos; Doctor; Faculty Member; School of Medicine; Koç University Hospital; N/A; 286247Case presentation: a 19-year-old pregnant woman at week 32 of gestation was referred to our clinic with progressive shortness of breath for the further evaluation and treatment of high-risk pregnancy. Her complaints had been existing since her childhood. Two years prior to her admission, she had been diagnosed with heart failure with preserved ejection fraction due to cardiomyopathy and associated pulmonary hypertension. The patient had no family history of any cardiac disease. She had never smoked or drunk alcohol. Her clinical condition had deteriorated progressively with the pregnancy.Publication Open Access A 2D MEMS stage for optical applications(Society of Photo-optical Instrumentation Engineers (SPIE), 2006) Ataman, Çağlar; Petremand, Yves; Noell, Wilfried; Epitaux, Marc; de Rooij, Nico F.; Department of Electrical and Electronics Engineering; Department of Electrical and Electronics Engineering; Ürey, Hakan; Faculty Member; College of Engineering; 8579A 2D MEMS platform for a microlens scanner application is reported. The platform is fabricated on an SOI wafer with 50/μm thick device layer. Entire device is defined with a single etching step on the same layer. Through four S-shaped beams, the device is capable of producing nonlinear 2D motion from linear ID translation of two pairs of comb actuator sets. The device has a clear aperture of 2mm by 2mm, which is hallowed from the backside for micro-optics assembly. In this paper, a numerical device model and its validation via experimental characterization results are presented. Integration of the micro-optical components with the stage is also discussed. Additionally, a new driving scheme to minimize the settling time of the device in DC operation is explored.Publication Open Access A bacteria-derived tail anchor localizes to peroxisomes in yeast and mammalian cells(Nature Publishing Group (NPG), 2018) Seferoğlu, Ayşe Bengisu; Department of Molecular Biology and Genetics; Department of Molecular Biology and Genetics; Dunn, Cory David; Keskin, Abdurrahman; Akdoğan, Emel; Lutfullahoglu-Bal, Guleycan; College of SciencesProkaryotes can provide new genetic information to eukaryotes by horizontal gene transfer (HGT), and such transfers are likely to have been particularly consequential in the era of eukaryogenesis. Since eukaryotes are highly compartmentalized, it is worthwhile to consider the mechanisms by which newly transferred proteins might reach diverse organellar destinations. Toward this goal, we have focused our attention upon the behavior of bacteria-derived tail anchors (TAs) expressed in the eukaryote Saccharomyces cerevisiae. In this study, we report that a predicted membrane-associated domain of the Escherichia coli YgiM protein is specifically trafficked to peroxisomes in budding yeast, can be found at a pre-peroxisomal compartment (PPC) upon disruption of peroxisomal biogenesis, and can functionally replace an endogenous, peroxisome-directed TA. Furthermore, the YgiM(TA) can localize to peroxisomes in mammalian cells. Since the YgiM(TA) plays no endogenous role in peroxisomal function or assembly, this domain is likely to serve as an excellent tool allowing further illumination of the mechanisms by which TAs can travel to peroxisomes. Moreover, our findings emphasize the ease with which bacteria-derived sequences might target to organelles in eukaryotic cells following HGT, and we discuss the importance of flexible recognition of organelle targeting information during and after eukaryogenesis.Publication Open Access A broken gauge approach to gravitational mass and charge(Springer, 2002) Tucker, R. W.; Department of Physics; Department of Physics; Dereli, Tekin; Faculty Member; College of Sciences; 201358We argue that a spontaneous breakdown of local Weyl invariance offers a mechanism in which gravitational interactions contribute to the generation of particle masses and their electric charge. The theory is formulated in terms of a spacetime geometry whose natural connection has both dynamic torsion and non-metricity. Its structure illuminates the role of dynamic scales used to determine measurable aspects of particle interactions and it predicts an additional neutral vector boson with electroweak properties. © SISSA/ISAS 2002.Publication Open Access A cartridge based sensor array platform for multiple coagulation measurements from plasma(Royal Society of Chemistry (RSC), 2015) Bulut, Serpil; Yaralioglu, G. G.; Department of Electrical and Electronics Engineering; Department of Molecular Biology and Genetics; Department of Chemical and Biological Engineering; Department of Electrical and Electronics Engineering; Department of Molecular Biology and Genetics; Department of Chemical and Biological Engineering; Çakmak, Onur; Ermek, Erhan; Kılınç, Necmettin; Barış, İbrahim; Kavaklı, İbrahim Halil; Ürey, Hakan; PhD Student; Other; Researcher; Teaching Faculty; Faculty Member; College of Engineering; Graduate School of Sciences and Engineering; College of Sciences; N/A; 109991; N/A; 111629; 40319; 8579This paper proposes a MEMS-based sensor array enabling multiple clot-time tests for plasma in one disposable microfluidic cartridge. The versatile LoC (Lab-on-Chip) platform technology is demonstrated here for real-time coagulation tests (activated Partial Thromboplastin Time (aPTT) and Prothrombin Time (PT)). The system has a reader unit and a disposable cartridge. The reader has no electrical connections to the cartridge. This enables simple and low-cost cartridge designs and avoids reliability problems associated with electrical connections. The cartridge consists of microfluidic channels and MEMS microcantilevers placed in each channel. The microcantilevers are made of electroplated nickel. They are actuated remotely using an external electro-coil and the read-out is also conducted remotely using a laser. The phase difference between the cantilever oscillation and the coil drive is monitored in real time. During coagulation, the viscosity of the blood plasma increases resulting in a change in the phase read-out. The proposed assay was tested on human and control plasma samples for PT and aPTT measurements. PT and aPTT measurements from control plasma samples are comparable with the manufacturer's datasheet and the commercial reference device. The measurement system has an overall 7.28% and 6.33% CV for PT and aPTT, respectively. For further implementation, the microfluidic channels of the cartridge were functionalized for PT and aPTT tests by drying specific reagents in each channel. Since simultaneous PT and aPTT measurements are needed in order to properly evaluate the coagulation system, one of the most prominent features of the proposed assay is enabling parallel measurement of different coagulation parameters. Additionally, the design of the cartridge and the read-out system as well as the obtained reproducible results with 10 mu l of the plasma samples suggest an opportunity for a possible point-of-care application.Publication Open Access A challenging design case study for interactive media design education: interactive media for individuals with autism(Springer, 2014) Orhun, Simge Esin; Çimen, Ayça Ünlüer; Department of Media and Visual Arts; Department of Media and Visual Arts; Yantaç, Asım Evren; Faculty Member; College of Social Sciences and Humanities; 52621Since 1999, research for creativity triggering education solutions for interactive media design (IMD) undergraduate level education in Yildiz Technical University leaded to a variety of rule breaking exercises. Among many approaches, the method of designing for disabling environment, in which the students design for the users with one or more of their senses disabled, brought the challenge of working on developing interactive solutions for the individuals with autism spectrum conditions (ASC). With the aim of making their life easier, the design students were urged to find innovative yet functional interaction solutions for this focused user group, whose communicational disability activate due to the deficiencies in their senses and/or cognition. Between 2011 and 2012, this project brief supported by participatory design method motivated 26 students highly to develop design works to reflect the perfect fit of interaction design to this challenging framework involving the defective social communication cases of autism.Publication Open Access A characterization of the extended serial correspondence(Elsevier, 2015) Heo, Eun Jeong; Department of Economics; Department of Economics; Yılmaz, Özgür; Faculty Member; College of Administrative Sciences and Economics; 108638We study the problem of assigning objects to a group of agents. We focus on probabilistic methods that take agents' ordinal preferences over the objects. Importantly, we allow for indifferences among objects. Katta and Sethuraman (2006) propose the extended serial correspondence to solve this problem. Our main result is a characterization of the extended serial correspondence in welfare terms by means of stochastic dominance efficiency, stochastic dominance no-envy and "limited invariance," a requirement we adapt from Heo (2014a). We also prove that an assignment matrix is selected by the extended serial correspondence if and only if it satisfies "non-wastefulness" and "ordinal fairness," which we adapt from Kesten et al.Publication Open Access A class of Banach algebras whose duals have the Schur property(TÜBİTAK, 1999) Mustafayev, H.; Department of Mathematics; Department of Mathematics; Ülger, Ali; Faculty Member; College of SciencesCall a commutative Banach algebra A a γ-algebra if it contains a bounded group Λ such that aco(Λ) contains a multiple of the unit ball of A. In this paper, first by exhibiting several concrete examples, we show that the class of γ-algebras is quite rich. Then, for a γ-algebra A, we prove that A* has the Schur property iff the Gelfand spectrum Σ of A is scattered iff A* = ap(A) iff A* = Span(Σ).Publication Open Access A clinical comparison of home-based and hospital-based exercise programs following arthroscopic capsulolabral repair for anterior shoulder instability(Human Kinetics, 2020) Atalar, Ata Can; Eren, Şule Meral; Uçak, Ayla; Çerezci, Önder; Eren, İlker; Canbulat, Nazan; Demirhan, Mehmet; Faculty Member; Faculty Member; School of Medicine; Koç University Hospital; 168021; 58534; 9882Context: ideal rehabilitation method following arthroscopic capsulolabral repair surgery for anterior shoulder instability has not been proven yet. Although rapid or slow protocols were compared previously, home- or hospital-based protocols were not questioned before. Objective: the aim of this prospective unrandomized controlled clinical trial is to compare the clinical outcomes of home-based and hospital-based rehabilitation programs following arthroscopic Bankart repair. Design: non-randomized controlled trial. Setting: orthopedics and physical therapy units of a single institution. Patients: fifty-four patients (49 males and 5 females) with an average age of 30.5 (9.1) years, who underwent arthroscopic capsulolabral repair and met the inclusion criteria, with at least 1-year follow-up were allocated into 2 groups: home-based (n = 33) and hospital-based (n = 21) groups. Interventions: both groups received identical rehabilitation programs. Patients in the home-based group were called for follow-up every 3 weeks. Patients in the hospital-based group admitted for therapy every other day for a total of 6 to 8 weeks. Both groups were followed identically after the eighth week and the rehabilitation program continued for 6 months. Main Outcome Measures: Clinical outcomes were assessed using Disabilities of Arm Shoulder Hand, Constant, and Rowe scores. Mann-Whitney U test was used to compare the results in both groups. Wilcoxon test was used for determining the progress in each group. Results: groups were age and gender matched (P =.61, P =.69). Average number of treatment sessions was 13.8 (7.3) for patients in the hospital-based group. Preoperative Disabilities of Arm Shoulder Hand (27.46 [11.81] vs 32.53 [16.42], P =.22), Constant (58.23 [14.23] vs 54.17 [10.46], P =.13), and Rowe (51.72 [15.36] vs 43.81 [19.16], P =.12) scores were similar between groups. Postoperative scores at sixth month were significantly improved in each group (P =.001, P =.001, and P =.001). No significant difference was observed between 2 groups regarding clinical scores in any time point. Conclusions: we have, therefore, concluded that a controlled home-based exercise program is as effective as hospital-based rehabilitation following arthroscopic capsulolabral repair for anterior shoulder instability.Publication Open Access A clinical scoring system to predict the development of bronchopulmonary dysplasia(Thieme Medical Publishers, 2015) Hayran, Mutlu; Derin, Hatice; Ovalı, Fahri; N/A; Gürsoy, Tuğba; Faculty Member; School of Medicine; 214691Objective: This study aims to develop a scoring system for the prediction of bronchopulmonary dysplasia (BPD). Methods: Medical records of 652 infants whose gestational age and birth weight were below 32 weeks and 1,500g, respectively, and who survived beyond 28th postnatal day were reviewed retrospectively. Logistic regression methods were used to determine the clinical and demographic risk factors within the first 72 hours of life associated with BPD, as well as the weights of these factors on developing BPD. Predictive accuracy of the scoring system was tested prospectively at the same unit. ResultsBirth weight, gestational age, gender, presence of respiratory distress syndrome, patent ductus arteriosus, intraventricular hemorrhage, hypotension were the most important risk factors for BPD. Therefore, a scoring system (BPD-TM score) ranging from 0 to 13 and grouped in four tiers (0-3: low, 4-6: low intermediate, 7-9: high intermediate, and 10-13: high risk) was developed based on these factors. Below the score of 4, 4.1% of infants (18/436), above the score of 9, 100% (29/29) of the infants developed BPD. The score was validated successfully in 172 infants. Conclusion: With this easy to use scoring system, one can predict the neonate at risk for BPD at 72 hours of life and direct preventive measures toward these infants.