Publications with Fulltext

Permanent URI for this collectionhttps://hdl.handle.net/20.500.14288/6

Browse

Search Results

Now showing 1 - 10 of 522
  • Thumbnail Image
    PublicationOpen Access
    Uluslararası çocuk kaçırmanın hukuki veçhelerine dair Lahey Sözleşmesi çerçevesinde aile hakkına saygı hakkı ve çocuğun üstün menfaatinin korunması: Marcus Frank Cerny başvurusu üzerinden bir inceleme
    (N/A, 2017) Oba, Meltem Ece; Law School
    In this study, the 1980 Hague Convention on the Civil Aspects of International Child Abductions is briefly explained and the Constitutional Court judgement on the Marcus Frank Cerny application is evaluated within the framework of the case law of the European Court of Human Rights.;TR: Bu çalışmada 1980 tarihli Uluslararası Çocuk Kaçırmaların Hukuki Veçhelerine Dair Lahey Sözleşmesi kısaca açıklanarak Marcus Frank Cerny başvurusuna ilişkin Anayasa mahkemesi kararı, İnsan Hakları Avrupa Mahkemesi içtihadı çerçevesinde değerlendirilmiştir.
  • Thumbnail Image
    PublicationOpen Access
    User interface paradigms for visually authoring mid-air gestures: a survey and a provocation
    (CEUR-WS, 2014) Department of Media and Visual Arts; Department of Computer Engineering; Department of Media and Visual Arts; Department of Computer Engineering; Baytaş, Mehmet Aydın; Yemez, Yücel; Özcan, Oğuzhan; Faculty Member; Faculty Member; College of Social Sciences and Humanities; College of Engineering; N/A; N/A; 12532
    Gesture authoring tools enable the rapid and experiential prototyping of gesture-based interfaces. We survey visual authoring tools for mid-air gestures and identify three paradigms used for representing and manipulating gesture information: graphs, visual markup languages and timelines. We examine the strengths and limitations of these approaches and we propose a novel paradigm to authoring location-based mid-air gestures based on space discretization.
  • Thumbnail Image
    PublicationOpen Access
    An information theoretical analysis of broadcast networks and channel routing for FRET-based nanoscale communications
    (Institute of Electrical and Electronics Engineers (IEEE), 2012) Kuşcu, Murat; Malak, Derya; Akan, Özgür Barış; Faculty Member; College of Engineering
    Nanoscale communication based on Forster Resonance Energy Transfer (FRET) enables nanomachines to communicate with each other using the excited state of the fluorescent molecules as the information conveyer. In this study, FRET-based nanoscale communication is further extended to realize FRET-based nanoscale broadcast communication with one transmitter and many receiver nanomachines, and the performance of the broadcast channel is analyzed information theoretically. Furthermore, an electrically controllable routing mechanism is proposed exploiting the Quantum Confined Stark Effect (QCSE) observed in quantum dots. It is shown that by appropriately selecting the employed molecules on the communicating nanomachines, it is possible to control the route of the information flow by externally applying electric field in FRET-based nanonetworks.
  • Thumbnail Image
    PublicationOpen Access
    Compressed training based massive MIMO
    (Institute of Electrical and Electronics Engineers (IEEE), 2019) Yılmaz, Baki Berkay; Department of Electrical and Electronics Engineering; Department of Electrical and Electronics Engineering; Erdoğan, Alper Tunga; Faculty Member; College of Engineering; 41624
    Massive multiple-input-multiple-output (MIMO) scheme promises high spectral efficiency through the employment of large scale antenna arrays in base stations. In time division duplexed implementations, co-channel mobile terminals transmit training information such that base stations can estimate and exploit channel state information to spatially multiplex these users. In the conventional approach, the optimal choice for training length was shown to be equal to the number of users, K. In this paper, we propose a new semiblind framework, named as "MIMO Compressed Training," which utilizes information symbols in addition to training symbols for adaptive spatial multiplexing. We show that this framework enables us to reduce (compress) the training length down to a value close to log(2) (K), i.e., the logarithm of the number of users, without any sparsity assumptions on the channel matrix. We also derive a prescription for the required packet length for proper training. The framework is built upon some convex optimization settings that enable efficient and reliable algorithm implementations. The numerical experiments demonstrate the strong potential of the proposed approach in terms of increasing the number of users per cell and improving the link quality.
  • Thumbnail Image
    PublicationOpen Access
    Dirac equation in spacetimes with non-metricity and Torsion
    (World Scientific Publishing, 2003) Adak, M.; Ryder, L.H.; Department of Physics; Department of Physics; Dereli, Tekin; PhD Student; Faculty Member; College of Sciences; 201358
    Dirac equation is written in a non-Riemannian spacetime with torsion and non-metricity by lifting the connection from the tangent bundle to the spinor bundle over spacetime. Foldy-Wouthuysen transformation of the Dirac equation in a Schwarzschild background spacetime. is considered. and it is shown that both the torsion and non-metricity couples to the momentum and spin of a massive, spinning particle. However, the effects are small to be observationally significant.
  • Thumbnail Image
    PublicationOpen Access
    The noisy channel mode for unsupervised word sense disambiguation
    (Massachusetts Institute of Technology (MIT) Press, 2010) Department of Computer Engineering; Department of Computer Engineering; Yüret, Deniz; Yatbaz, Mehmet Ali; Faculty Member; PhD Student; College of Engineering; 179996; 192506
    We introduce a generative probabilistic model, the noisy channel model, for unsupervised word sense disambiguation. In our model, each context C is modeled as a distinct channel through which the speaker intends to transmit a particular meaning S using a possibly ambiguous word W. To reconstruct the intended meaning the hearer uses the distribution of possible meanings in the given context P(S|C) and possible words that can express each meaning P(W|S). We assume P(W|S) is independent of the context and estimate it using WordNet sense frequencies. The main problem of unsupervised WSD is estimating context-dependent P(S|C) without access to any sense-tagged text. We show one way to solve this problem using a statistical language model based on large amounts of untagged text. Our model uses coarse-grained semantic classes for S internally and we explore the effect of using different levels of granularity on WSD performance. The system outputs fine-grained senses for evaluation, and its performance on noun disambiguation is better than most previously reported unsupervised systems and close to the best supervised systems.
  • Thumbnail Image
    PublicationOpen Access
    BCS theory of time-reversal-symmetric Hofstadter-Hubbard model
    (American Physical Society (APS), 2017) Umucalılar, Rıfat Onur; Department of Physics; Department of Physics; Işkın, Menderes; Faculty Member; College of Sciences; 29659
    The competition between the length scales associated with the periodicity of a lattice potential and the cyclotron radius of a uniform magnetic field is known to have dramatic effects on the single-particle properties of a quantum particle, e.g., the fractal spectrum is known as the Hofstadter butterfly. Having this intricate competition in mind, we consider a two-component Fermi gas on a square optical lattice with opposite synthetic magnetic fields for the components, and study its effects on the many-body BCS-pairing phenomenon. By a careful addressing of the distinct superfluid transitions from the semimetal, quantum spin-Hall insulator, or normal phases, we explore the low-temperature phase diagrams of the model, displaying lobe structures that are reminiscent of the well-known Mott-insulator transitions of the Bose-Hubbard model.
  • Thumbnail Image
    PublicationOpen Access
    Improving CO2 separation performance of MIL-53(Al) by incorporating 1-N-Butyl-3-methylimidazolium methyl sulfate
    (Wiley, 2019) Department of Chemical and Biological Engineering; N/A; Department of Chemical and Biological Engineering; Kulak, Harun; Polat, Hüsamettin Mert; Kavak, Safiyye; Keskin, Seda; Uzun, Alper; Faculty Member; Koç University Tüpraş Energy Center (KUTEM) / Koç Üniversitesi Tüpraş Enerji Merkezi (KÜTEM); Koç University Surface Science and Technology Center (KUYTAM) / Koç Üniversitesi Yüzey Teknolojileri Araştırmaları Merkezi (KUYTAM); Graduate School of Sciences and Engineering; N/A; N/A; N/A; 40548; 59917
    1-n-Butyl-3-methylimidazolium methyl sulfate is incorporated into MIL-53(Al). Detailed characterization is done by X-ray fluorescence, Brunauer-Emmett-Teller surface area, scanning electron microscopy, X-ray diffraction, Fourier-transform infrared spectroscopy, and thermogravimetric analysis. Results show that ionic liquid (IL) interacts directly with the framework, significantly modifying the electronic environment of MIL-53(Al). Based on the volumetric gas adsorption measurements, CO2, CH4, and N-2 adsorption capacities decreased from 112.0, 46.4, and 19.6 cc (STP) g(MIL-53(Al))(-1) to 42.2, 13.0, and 4.3 cc (STP) g(MIL-53(Al))(-1) at 5 bar, respectively, upon IL incorporation. Data show that this postsynthesis modification leads to more than two and threefold increase in the ideal selectivity for CO2 over CH4 and N-2 separations, respectively, as compared with pristine MIL-53(Al). The isosteric heat of adsorption (Qst) values show that IL incorporation increases CO2 affinity and decreases CH4 and N-2 affinities. Cycling adsorption-desorption measurements show that the composite could be regenerated with almost no decrease in the CO2 adsorption capacity for six cycles and confirm the lack of any significant IL leaching. The results offer MIL-53(Al) as an excellent platform for the development of a new class of IL/MOF composites with exceptional performance for CO2 separation.
  • Thumbnail Image
    PublicationOpen Access
    Engineering human stellate cells for beta cell replacement therapy promotes in vivo recruitment of regulatory T cells
    (Elsevier, 2019) N/A; Department of Chemical and Biological Engineering; Department of Chemical and Biological Engineering; Oran, Dilem Ceren; Lokumcu, Tolga; Bal, Tuğba; İnceoğlu, Yasemin; Albayrak, Özgür; Erkan, Murat Mert; Kurtoğlu, Metin; Can, Füsun; Önder, Tuğba Bağcı; Kızılel, Seda; Akolpoğlu, Mükrime Birgül; Faculty Member; Faculty Member; Master Student; Koç University Research Center for Translational Medicine (KUTTAM) / Koç Üniversitesi Translasyonel Tıp Araştırma Merkezi (KUTTAM); Graduate School of Sciences and Engineering; Graduate School of Health Sciences; College of Engineering; School of Medicine; N/A; N/A; N/A; N/A; N/A; N/A; N/A; 103165; 184359; 28376; N/A
    Type 1 diabetes (T1D) is an autoimmune disease characterized by destruction of pancreatic β cells. One of the promising therapeutic approaches in T1D is the transplantation of islets; however, it has serious limitations. To address these limitations, immunotherapeutic strategies have focused on restoring immunologic tolerance, preventing transplanted cell destruction by patients’ own immune system. Macrophage-derived chemokines such as chemokine-ligand-22 (CCL22) can be utilized for regulatory T cell (Treg) recruitment and graft tolerance. Stellate cells (SCs) have various immunomodulatory functions: recruitment of Tregs and induction of T-cell apoptosis. Here, we designed a unique immune-privileged microenvironment around implantable islets through overexpression of CCL22 proteins by SCs. We prepared pseudoislets with insulin-secreting mouse insulinoma-6 (MIN6) cells and human SCs as a model to mimic naive islet morphology. Our results demonstrated that transduced SCs can secrete CCL22 and recruit Tregs toward ​the implantation site in vivo. This study is promising to provide a fundamental understanding of SC-islet interaction and ligand synthesis and transport from SCs at the graft site for ensuring local immune tolerance. Our results also establish a new paradigm for creating tolerable grafts for other chronic diseases such as diabetes, anemia, and central nervous system (CNS) diseases, and advance the science of graft tolerance.
  • Thumbnail Image
    PublicationOpen Access
    Topological superfluid phases of an atomic Fermi gas with in- and out-of-plane Zeeman fields and equal Rashba-Dresselhaus spin-orbit coupling
    (American Physical Society (APS), 2013) Subaşı, Ahmet Levent; Department of Physics; Department of Physics; Işkın, Menderes; Faculty Member; College of Sciences; 29659
    We analyze the effects of in-and out-of-plane Zeeman fields on the BCS-Bose-Einstein condensation (BEC) evolution of a Fermi gas with equal Rashba-Dresselhaus (ERD) spin-orbit coupling (SOC). We show that the ground state of the system involves gapless superfluid phases that can be distinguished with respect to the topology of the momentum-space regions with zero excitation energy. For the BCS-like uniform superfluid phases with zero center-of-mass momentum, the zeros may correspond to one or two doubly degenerate spheres, two or four spheres, two or four concave spheroids, or one or two doubly degenerate circles, depending on the combination of Zeeman fields and SOC. Such changes in the topology signal a quantum phase transition between distinct superfluid phases and leave their signatures on some thermodynamic quantities. We also analyze the possibility of Fulde-Ferrell-Larkin-Ovchinnikov (FFLO)-like nonuniform superfluid phases with finite center-of-mass momentum and obtain an even richer phase diagram.