Publications with Fulltext

Permanent URI for this collectionhttps://hdl.handle.net/20.500.14288/6

Browse

Search Results

Now showing 1 - 10 of 26
  • Thumbnail Image
    PublicationOpen Access
    Emergence of near-infrared photoluminescence via ZnS shell growth on the AgBiS2 nanocrystals
    (American Chemical Society, 2024) Department of Chemistry; Department of Electrical and Electronics Engineering; Önal, Asım; Kaya, Tarık Safa; Metin, Önder; Nizamoğlu, Sedat; Department of Chemistry; Department of Electrical and Electronics Engineering; Graduate School of Sciences and Engineering; College of Sciences; College of Engineering
    AgBiS2 nanocrystals (NCs), composed of nontoxic, earth-abundant materials and exhibiting an exceptionally high absorption coefficient from visible to near-infrared (>105 cm(-1)), hold promise for photovoltaics but have lack of photoluminescence (PL) due to intrinsic nonradiative recombination and challenging shell growth. In this study, we reported a facile wet-chemical approach for the epitaxial growth of ZnS shell on AgBiS2 NCs, which triggered the observation of PL emission in the near-infrared (764 nm). Since high quality of the core is critical for epitaxial shell growth, we first obtained rock-salt structured AgBiS2 NCs with high crystallinity, nearly spherical shape and monodisperse size distribution (<6%) via a dual-ligand approach reacting Ag-Bi oleate with elemental sulfur in oleylamine. Next, a zincblende ZnS shell with a low-lattice mismatch of 4.9% was grown on as-prepared AgBiS2 NCs via a highly reactive zinc (Zn(acac)(2)) precursor that led to a higher photoluminescence quantum yield (PLQY) of 15.3%, in comparison with a relatively low reactivity precursor (Zn(ac)(2)) resulting in reduced PLQY. The emission from AgBiS2 NCs with ultrastrong absorption, facilitated by shell growth, can open up new possibilities in lighting, display, and bioimaging.
  • Thumbnail Image
    PublicationOpen Access
    Synthesis of stable gold nanoparticles using linear polyethyleneimines and catalysis of both anionic and cationic azo dye degradation
    (Royal Society of Chemistry (RSC), 2020) Abkenar, Sirous Khabbaz; Ow-Yang, Cleva W.; N/A; Department of Chemistry; Çavuşlar, Özge; Acar, Havva Funda Yağcı; Faculty Member; Department of Chemistry; Graduate School of Sciences and Engineering; College of Sciences; N/A; N/A; N/A; 178902
    Reduction of auric acid with polyethyleneimine (PEI) provides a simple, low-cost alternative for the production of cationic gold nanoparticles (GNPs). However, linear PEI (lPEI) failed to produce small, colloidally stable GNPs, so far. Since lPEI is a polyelectrolyte, pH should be an important factor both in reduction and stabilization of GNPs and may be optimized to produce small and stable lPEI/GNPs. Cationic GNPs were produced by the direct reduction of auric acid in water with lPEI utilizing two different methods to dissolve the polymer: by protonation or at high temperature. The influence of pH on the particle formation and properties was studied over a wide pH range (3.5 to 10). The impacts of the PEI/Au mass ratio, polymer molecular weight (2.5 and 25 kDa) and post-synthetic pH on the particle properties were also studied. Best is to dissolve lPEI by protonation and to clean the GNPs via controlled centrifugal precipitation. The MW did not influence the hydrodynamic size, stability or particle shape, but low MW lPEI provided faceted particles. This simple one pot synthesis of small, stable cationic GNPs in water is a valuable, simple alternative for producing new cationic GNPs with even low molecular weight lPEI. Additionally, these GNPs were evaluated as catalysts in the degradation of methyl orange (MO) (anionic-zwitterionic) and methylene blue (MB) (cationic) azo dyes at different pH values. The fastest degradation of MO and MB was recorded at pH 7.5 and 3.5, respectively. Overall, this is a rare case where a single catalyst quickly and effectively catalyzes the degradation of both cationic and anionic dyes.
  • Thumbnail Image
    PublicationOpen Access
    Synthesis and characterization of mesoporous zirconium oxide thin films
    (Institute of Physics (IOP) Publishing, 2010) Department of Chemistry; Miko, Annamaria; Demirel, Adem Levent; Somer, Mehmet Suat; Teaching Faculty; Faculty Member; Faculty Member; Department of Chemistry; College of Sciences; N/A; 6568; 178882
    Zirconium oxide (ZrO2) has generated wide interest because of its potential in applications such as solid oxide fuel cells, catalysts and optical devices. In these applications, it is important to control the grain size of the material and increase the surface area by introducing porosity with tailored pore size. This paper presents a synthesis route for the preparation of mesoporous zirconia using spin-coating method combined with block copolymer templating evaporation induced self assembly (EISA). The hybrid mesophase was formed by zirconium oxychloride precursor ZrOCl2 center dot 8H(2)O and Brij 700 poly-ethylene oxide based block copolymer template C18H37(OCH2CH2). FT-IR and Raman measurements of the hybrid mesophase provided information on the possible intermolecular interactions between the precursor and the copolymer template. The results indicate a weak ion-dipole interaction between the inorganic precursor and the organic template after the solvent evaporation, possibly directly between the zirconium and the oxygen of the poly-ethylene oxide chain. The removal of the organic block copolymer by heat treatment resulted in mesoporous zirconia with pore size of similar to 4-8 nm and crystalline grain size of similar to 10-17 nm. The morphology in thin films depended significantly on the solvent quality and the block copolymer concentration. Tailoring the surface morphology and the grain size resulted in super-hydrophilic mesoporous zirconia thin films in contrast to water contact angle of 50 degrees on conventional tetragonal zirconium oxide.
  • Thumbnail Image
    PublicationOpen Access
    A new class of porous materials for efficient CO2 separation: ionic liquid/graphene aerogel composites
    (Elsevier, 2021) Department of Chemical and Biological Engineering; N/A; Department of Chemistry; Zeeshan, Muhammad; Yalçın, Kaan; Keskin, Seda; Uzun, Alper; Öztuna, Feriha Eylül Saraç; Ünal, Uğur; PhD Student; Faculty Member; Faculty Member; Department of Chemical and Biological Engineering; Department of Chemistry; Koç University Tüpraş Energy Center (KUTEM) / Koç Üniversitesi Tüpraş Enerji Merkezi (KÜTEM); Koç University Surface Science and Technology Center (KUYTAM) / Koç Üniversitesi Yüzey Teknolojileri Araştırmaları Merkezi (KUYTAM); Graduate School of Sciences and Engineering; College of Engineering; College of Sciences; N/A; N/A; 40548; 59917; N/A; 42079
    Here, we report a new post-synthesis modification strategy for functionalizing reduced graphene aerogels (rGAs) towards an exceptional CO2 separation performance. 1-N-butyl-3-methylimidazolium hexafluorophosphate ([BMIM][PF6]) was impregnated on a rGA, prepared by reducing GA at 700 degrees C, at various ionic liquid (IL) loadings of 5, 10, 30, and 50 wt%. The resulting composites were characterized in deep detail by X-ray photoelectron spectroscopy, X-ray diffraction, N-2 physical adsorption measurements, scanning electron microscopy, Fourier transform infrared and Raman spectroscopies, and thermogravimetric analysis. Results indicated the presence of interactions between the rGA surface and the anion of the IL, potentially improving the CO2 affinity. Volumetric gas adsorption measurements using these materials showed that the deposition of [BMIM][PF6] on rGA surface at an IL loading of 50 wt% boosts the CO2/CH4 selectivity by more than 20-times, exceeding an absolute value of 120, a remarkably higher CO2/CH4 selectivity compared to that of other functionalized materials under similar operating conditions. Tunability of both the IL structure and the surface characteristics of rGA offer a tremendous degree of flexibility for the rational design of these IL/rGA composites towards high performance in gas separation applications.
  • Thumbnail Image
    PublicationOpen Access
    Cationic [6]helicenes: tuning (chir)optical properties up to the near infra-red
    (Elsevier, 2022) Labrador, Geraldine M.; Jacquemin, Denis; Lacour, Jerome; Department of Chemistry; Bosson, Johann; Department of Chemistry; College of Sciences
    The intramolecular condensation of ortho substituents of triaryl carbenium ions can lead to the formation of cationic helicenes. These chiral and configurationally stable molecules exhibit extended optical properties reminiscent of their parent methylium ions. Among them, cationic [6]helicenes are particularly interesting as orthogonal late-stage functionalization strategies allow the introduction of a variety of auxochromes with different regiochemistry. Intense chiroptical properties can thus be tailored in the far red and up to the near infra-red (NIR) spectral windows. A wealth of applications can be foreseen, in particular in material sciences.
  • Thumbnail Image
    PublicationOpen Access
    Mechanochemical synthesis and consolidation of nanostructured cerium hexaboride
    (University of Novi Sad, 2019) Ağaoğulları, Duygu; Akçamlı, Nazlı; Suryanarayana, Challapalli; Duman, İsmail; Öveçoğlu, Mustafa Lütfi; Department of Chemistry; Balcı, Özge; Researcher; Department of Chemistry; College of Sciences; 295531
    This study reports on the mechanochemical synthesis (MCS) and consolidation of nanostructured CeB6 powders of high purity. CeB6 powders were prepared via MCS by milling CeO2, B2O3 and Mg powders in a high-energy ball mill for different milling times. The effects of milling time on the formation, microstructure and thermal behaviour of the synthesized powders were investigated and the optimum MCS duration was determined. Purified powders were obtained after HCl leaching by removing MgO by-product. The prepared powders were characterized by a number of techniques including X-ray diffraction, stereomicroscopy, scanning and transmission electron microscopy coupled with energy dispersive spectrometry, differential scanning calorimetry, atomic absorption spectrometry, particle size analysis, surface area analysis and vibrating sample magnetometry. The high-purity CeB6 powders having an average particle size of 86 nm were consolidated by cold-pressing followed by pressureless sintering at 1700 degrees C for 5 h. The bulk CeB6 specimen was investigated for its microstructure, density, electrical resistivity, surface roughness and some mechanical properties (microhardness and wear behaviour). The relative density, electrical resistivity, microhardness and wear rate of the bulk CeB6 were determined as 95.2% TD, 57.50 mu W.cm, 11.65 GPa and 1.46 x 10(-4) mm(3)/N.m, respectively.
  • Thumbnail Image
    PublicationOpen Access
    Key properties of inorganic thermoelectric materials - tables (version 1)
    (Institute of Physics (IOP) Publishing, 2022) Freer, R.; Ekren, D.; Ghosh, T.; Biswas, K.; Qiu, P.; Wan, S.; Chen, L.; Han, S.; Fu, C.; Zhu, T.; Ashiquzzaman Shawon, A.K.M.; Zevalkink, A.; Imasato, K.; Snyder, G.J.; Cardoso-Gil, R.; Svanidze, E.; Funahashi, R.; Powell, A.V.; Mukherjee, S.; Tippireddy, S.; Vaqueiro, P.; Gascoin, F.; Kyratsi, T.; Sauerschnig, P.; Mori, T.; N/A; Department of Chemistry; Aydemir, Umut; Sağlık, Kıvanç; Özen, Melis; Faculty Member; Department of Chemistry; Koç University AKKİM Boron-Based Materials _ High-technology Chemicals Research _ Application Center (KABAM) / Koç Üniversitesi AKKİM Bor Tabanlı Malzemeler ve İleri Teknoloji Kimyasallar Uygulama ve Araştırma Merkezi (KABAM); Graduate School of Sciences and Engineering; College of Sciences; 58403; N/A; N/A
    This paper presents tables of key thermoelectric properties, which define thermoelectric conversion efficiency, for a wide range of inorganic materials. The twelve families of materials included in these tables are primarily selected on the basis of well established, internationally-recognized performance and promise for current and future applications: tellurides, skutterudites, half Heuslers, Zintls, Mg-Sb antimonides, clathrates, FeGa3-type materials, actinides and lanthanides, oxides, sulfides, selenides, silicides, borides and carbides. As thermoelectric properties vary with temperature, data are presented at room temperature to enable ready comparison, and also at a higher temperature appropriate to peak performance. An individual table of data and commentary are provided for each family of materials plus source references for all the data.
  • Thumbnail Image
    PublicationOpen Access
    Evolution of magnetic properties of crystalline cobalt-iron boride nanoparticles via optimization of synthesis conditions using hydrous metal chlorides
    (Elsevier, 2021) Schmidt, Marcus; Bobnar, Matej; Burkhardt, Ulrich; Department of Chemistry; Altıntaş, Zerrin; Khoshsima, Sina; Somer, Mehmet Suat; Researcher; Researcher; Researcher; Department of Chemistry; Koç University AKKİM Boron-Based Materials _ High-technology Chemicals Research _ Application Center (KABAM) / Koç Üniversitesi AKKİM Bor Tabanlı Malzemeler ve İleri Teknoloji Kimyasallar Uygulama ve Araştırma Merkezi (KABAM); College of Sciences; N/A; N/A; 295531
    Chemical synthesis of crystalline and nanoscale cobalt-iron metal boride powders was studied using hydrous metal chlorides and NaBH4. The effects of precursor concentration and optimized synthesis conditions on the phase formation, microstructure, and magnetic properties were investigated. After applying a reaction of CoCl2·6H2O-FeCl3·6H2O-NaBH4 at 850 °C, (CoFe)B2, (CoFe)B, Co2B, Fe3B, and Fe0.71Co0.29 boride phases were obtained from different synthesis conditions applied under autogenic pressure or Ar flow atmosphere. Oxychloride impurities were the reason for the reduced magnetization values. The highest saturation magnetization of 183 emu/g belongs to obtained nanoparticles containing (CoFe)B2 and (CoFe)B pure phases. High temperature magnetic measurements marked synthesized powders as soft magnetic materials up to 795 K while no Tc was reached for the obtained phases.
  • Thumbnail Image
    PublicationOpen Access
    High-quality MgB2 nanocrystals synthesized by using modified amorphous nano-boron powders: study of defect structures and superconductivity properties
    (American Institute of Physics (AIP) Publishing, 2019) Erdem, Emre; Hassler, Wolfgang; Department of Chemistry; N/A; Somer, Mehmet Suat; Bateni, Ali; Faculty Member; PhD Student; Department of Chemistry; College of Sciences; Graduate School of Sciences and Engineering
    Nano sized magnesium diboride (MgB2) samples were synthesized using various high-quality nano-B precursor powders. The microscopic defect structures of MgB2 samples were systematically investigated using X-ray powder diffraction, Raman, resistivity measurements and electron paramagnetic resonance spectroscopy. A significant deviation in the critical temperature T-c was observed due to defects and crystal distortion. The symmetry effect of the latter is also reflected on the vibrational modes in the Raman spectra. Scanning electron microscopy analysis demonstrate uniform and ultrafine morphology for the modified MgB2. Defect center in particular Mg vacancies influence the connectivity and the conductivity properties which are crucial for the superconductivity applications.
  • Thumbnail Image
    PublicationOpen Access
    Locked and loaded: ?-galactosidase activated photodynamic therapy agent enables selective imaging and targeted treatment of glioblastoma multiforme cancer cells
    (American Chemical Society (ACS), 2022) Elmazoğlu, Z.; Atakan, G.; Kepil, D.; Aykent, G.; Günbaş, G.; Department of Chemistry; Kölemen, Safacan; Almammadov, Toghrul; Faculty Member; Researcher; Department of Chemistry; Koç University Surface Science and Technology Center (KUYTAM) / Koç Üniversitesi Yüzey Teknolojileri Araştırmaları Merkezi (KUYTAM); Koç University Boron and Advanced Materials Application and Research Center (KUBAM) / Koç Üniversitesi Bor ve İleri Malzemeler Uygulama ve Araştırma Merkezi (KUBAM); College of Sciences; 272051; N/A
    Selective detection and effective therapy of brain cancer, specifically, the very aggressive glioblastoma multiforme (GBM), remains one of the paramount challenges in clinical settings. While radiotherapy combined surgery is proposed as the main treatment course, it has several drawbacks such as complexity of the operation and common development of recurrent tumors in this course of patient care. Unique opportunities presented by photodynamic therapy (PDT) offer promising, effective, and precise therapy against GBM cells along with simultaneous imaging opportunities. However, activatable, theranostic molecular systems in PDT modality for GBM remained scarce. Specifically, even though elevated fi-galactosidase (fi-gal) activity in glioblastoma cells is well-documented, targeted, activatable therapeutic PDT agents have not been realized. Herein, we report a fi-galactosidase (fi-gal) activatable phototheranostic agent based on an iodinated resorufin core (RB-1) which was realized in only three steps with commercial reagents in 29% overall yield. RB-1 showed very high singlet oxygen (1O2) quantum yield (54%) accompanied by a remarkable turn-on response in fluorescence upon enzymatic activation. RB-1 was tested in different cell lines and revealed selective photocytotoxicity in U-87MG glioblastoma cells. Additionally, thanks to almost 7% fluorescence quantum yield (phi F) despite extremely high 1O2 generation yield, RB-1 was also demonstrated as a successful agent for fluorescence imaging of U-87MG cells. Due to significantly lower (fi-gal) activity in healthy cells (NIH/3T3), RB-1 stayed in a passive state and showed minimal photo and dark toxicity. RB-1 marks the first example of a fi- gal activatable phototheranostic agent toward effective treatment of glioblastoma.