Publications with Fulltext

Permanent URI for this collectionhttps://hdl.handle.net/20.500.14288/6

Browse

Search Results

Now showing 1 - 10 of 13
  • Thumbnail Image
    PublicationOpen Access
    Introduction to noise radar and its waveforms
    (Multidisciplinary Digital Publishing Institute (MDPI), 2020) De Palo, Francesco; Galati, Gaspare; Pavan, Gabriele; Wasserzier, Christoph; Department of Electrical and Electronics Engineering; Savcı, Kubilay; Department of Electrical and Electronics Engineering; Graduate School of Sciences and Engineering
    In the system-level design for both conventional radars and noise radars, a fundamental element is the use of waveforms suited to the particular application. In the military arena, low probability of intercept (LPI) and of exploitation (LPE) by the enemy are required, while in the civil context, the spectrum occupancy is a more and more important requirement, because of the growing request by non-radar applications; hence, a plurality of nearby radars may be obliged to transmit in the same band. All these requirements are satisfied by noise radar technology. After an overview of the main noise radar features and design problems, this paper summarizes recent developments in "tailoring" pseudo-random sequences plus a novel tailoring method aiming for an increase of detection performance whilst enabling to produce a (virtually) unlimited number of noise-like waveforms usable in different applications.
  • Thumbnail Image
    PublicationOpen Access
    Distinguishing genuine Imperial Qing Dynasty porcelain from ancient replicas by on-site non-invasive XRF and Raman spectroscopy
    (Multidisciplinary Digital Publishing Institute (MDPI), 2022) Colomban, P.; Gironda, M.; d'Abrigeon, P.; Franci, Gülsu Şimşek; Researcher; Koç University Surface Science and Technology Center (KUYTAM) / Koç Üniversitesi Yüzey Teknolojileri Araştırmaları Merkezi (KUYTAM)
    The combined use of non-invasive on-site portable techniques, Raman microscopy, and X-ray fluorescence spectroscopy on seven imperial bowls and two decorated dishes, attributed to the reigns of the Kangxi, Yongzheng, Qianlong, and Daoguang emperors (Qing Dynasty), allows the identification of the coloring agents/opacifiers and composition types of the glazes and painted enamels. Particular attention is paid to the analysis of the elements used in the (blue) marks and those found in the blue, yellow, red, and honey/gilded backgrounds on which, or in reserve, a floral motif is principally drawn. The honey-colored background is made with gold nanoparticles associated with a lead- and arsenic-based flux. One of the red backgrounds is also based on gold nanoparticles, the second containing copper nanoparticles, both in lead-based silicate enamels like the blue and yellow backgrounds. Tin and arsenic are observed, but cassiterite (SnO2) is clearly observed in one of the painted decors (dish) and in A676 yellow, whereas lead (calcium/potassium) arsenate is identified in most of the enamels. Yellow color is achieved with Pb-Sn-Sb pyrochlore (Naples yellow) with various Sb contents, although green color is mainly based on lead-tin oxide mixed with blue enamel. The technical solutions appear very different from one object to another, which leads one to think that each bowl is really a unique object and not an item produced in small series. The visual examination of some marks shows that they were made in overglaze (A608, A616, A630, A672). It is obvious that different types of cobalt sources were used for the imprinting of the marks: cobalt rich in manganese for bowl A615 (Yongzheng reign), cobalt rich in arsenic for bowl A613 (but not the blue mark), cobalt with copper (A616), and cobalt rich in arsenic and copper (A672). Thus, we have a variety of cobalt sources/mixtures. The high purity of cobalt used for A677 bowl indicates a production after similar to 1830-1850.
  • Thumbnail Image
    PublicationOpen Access
    Effects of force field selection on the computational ranking of MOFs for CO2 separations
    (American Chemical Society (ACS), 2018) Department of Chemical and Biological Engineering; Keskin, Seda; Dokur, Derya; Master Student; Department of Chemical and Biological Engineering; Graduate School of Sciences and Engineering; 40548; N/A
    Metal-organic frameworks (MOFs) have been considered as highly promising materials for adsorption-based CO2 separations. The number of synthesized MOFs has been increasing very rapidly. High-throughput molecular simulations are very useful to screen large numbers of MOFs in order to identify the most promising adsorbents prior to extensive experimental studies. Results of molecular simulations depend on the force field used to define the interactions between gas molecules and MOFs. Choosing the appropriate force field for MOFs is essential to make reliable predictions about the materials' performance. In this work, we performed two sets of molecular simulations using the two widely used generic force fields, Dreiding and UFF, and obtained adsorption data of CO2/H-2, CO2/N-2, and CO2/CH4 mixtures in 100 different MOF structures. Using this adsorption data, several adsorbent evaluation metrics including selectivity, working capacity, sorbent selection parameter, and percent regenerability were computed for each MOF. MOFs were then ranked based on these evaluation metrics, and top performing materials were identified. We then examined the sensitivity of the MOF rankings to the force field type. Our results showed that although there are significant quantitative differences between some adsorbent evaluation metrics computed using different force fields, rankings of the top MOF adsorbents for CO2 separations are generally similar: 8, 8, and 9 out of the top 10 most selective MOFs were found to be identical in the ranking for CO2/H-2, CO2/N-2, and CO2/CH4 separations using Dreiding and UFF. We finally suggested a force field factor depending on the energy parameters of atoms present in the MOFs to quantify the robustness of the simulation results to the force field selection. This easily computable factor will be highly useful to determine whether the results are sensitive to the force field type or not prior to performing computationally demanding molecular simulations.
  • Thumbnail Image
    PublicationOpen Access
    Minimum length scheduling for multi-cell full duplex wireless powered communication networks
    (Multidisciplinary Digital Publishing Institute (MDPI), 2021) Iqbal, M. S.; Sadi, Y.; Department of Electrical and Electronics Engineering; Ergen, Sinem Çöleri; Faculty Member; Department of Electrical and Electronics Engineering; College of Engineering; 7211
    Wireless powered communication networks (WPCNs) will be a major enabler of massive machine type communications (MTCs), which is a major service domain for 5G and beyond systems. These MTC networks will be deployed by using low-power transceivers and a very limited set of transmission configurations. We investigate a novel minimum length scheduling problem for multi-cell full-duplex wireless powered communication networks to determine the optimal power control and scheduling for constant rate transmission model. The formulated optimization problem is combinatorial in nature and, thus, difficult to solve for the global optimum. As a solution strategy, first, we decompose the problem into the power control problem (PCP) and scheduling problem. For the PCP, we propose the optimal polynomial time algorithm based on the evaluation of Perron– Frobenius conditions. For the scheduling problem, we propose a heuristic algorithm that aims to maximize the number of concurrently transmitting users by maximizing the allowable interference on each user without violating the signal-to-noise-ratio (SNR) requirements. Through extensive simulations, we demonstrate a 50% reduction in the schedule length by using the proposed algorithm in comparison to unscheduled concurrent transmissions.
  • Thumbnail Image
    PublicationOpen Access
    Strong light-matter interactions in Au plasmonic nanoantennas coupled with Prussian Blue Catalyst on BiVO(4) for photoelectrochemical water splitting
    (Wiley, 2020) Ghobadi, T. G. U.; Ghobadi, A.; Soydan, M. C.; Karadaş, F.; Özbay, E.; N/A; Department of Chemistry; Barzgarvishlaghi, Mahsa; Kaya, Sarp; Faculty Member; Department of Chemistry; Koç University Tüpraş Energy Center (KUTEM) / Koç Üniversitesi Tüpraş Enerji Merkezi (KÜTEM); Graduate School of Sciences and Engineering; College of Sciences; N/A; 116541
    A facial and large-scale compatible fabrication route is established, affording a high-performance heterogeneous plasmonic-based photoelectrode for water oxidation that incorporates a CoFe-Prussian blue analog (PBA) structure as the water oxidation catalytic center. For this purpose, an angled deposition of gold (Au) was used to selectively coat the tips of the bismuth vanadate (BiVO4 ) nanostructures, yielding Au-capped BiVO4 (Au-BiVO4 ). The formation of multiple size/dimension Au capping islands provides strong light-matter interactions at nanoscale dimensions. These plasmonic particles not only enhance light absorption in the bulk BiVO4 (through the excitation of Fabry-Perot (FP) modes) but also contribute to photocurrent generation through the injection of sub-band-gap hot electrons. To substantiate the activity of the photoanodes, the interfacial electron dynamics are significantly improved by using a PBA water oxidation catalyst (WOC) resulting in an Au-BiVO4 /PBA assembly. At 1.23 V (vs. RHE), the photocurrent value for a bare BiVO4 photoanode was obtained as 190 μA cm-2 , whereas it was boosted to 295 μA cm-2 and 1800 μA cm-2 for Au-BiVO4 and Au-BiVO4 /PBA, respectively. Our results suggest that this simple and facial synthetic approach paves the way for plasmonic-based solar water splitting, in which a variety of common metals and semiconductors can be employed in conjunction with catalyst designs.
  • Thumbnail Image
    PublicationOpen Access
    Combined GCMC, MD, and DFT approach for unlocking the performances of COFs for methane purification
    (American Chemical Society (ACS), 2021) Department of Chemical and Biological Engineering; Keskin, Seda; Haşlak, Zeynep Pınar; Altundal, Ömer Faruk; Faculty Member; Department of Chemical and Biological Engineering; College of Engineering; Graduate School of Sciences and Engineering; 40548; N/A; N/A
    Covalent organic frameworks (COFs) are promising materials for gas storage and separation; however, the potential of COFs for separation of CH4 from industrially relevant gases such as H-2, N-2, and C2H6 is yet to be investigated. In this work, we followed a multiscale computational approach to unlock both the adsorption- and membrane-based CH4/H-2, CH4/N-2, and C2H6/CH4 separation potentials of 572 COFs by combining grand canonical Monte Carlo (GCMC) and molecular dynamics (MD) simulations and density functional theory (DFT) calculations. Adsorbent performance evaluation metrics of COFs, adsorption selectivity, working capacity, regenerability, and adsorbent performance score were calculated for separation of equimolar CH4/H-2, CH4/N-2, and C2H6/CH4 mixtures at vacuum swing adsorption (VSA) and pressure swing adsorption (PSA) conditions to identify the best-performing COFs for each mixture. Results showed that COFs could achieve selectivities of 2-85, 1-7, and 2-23 for PSA-based CH4/H-2, CH4/N-2, and C2H6/CH4 separations, respectively, outperforming conventional adsorbents such as zeolites and activated carbons for each mixture. Structure-performance relations revealed that COFs with pore sizes <10 angstrom are promising adsorbents for all mixtures. We identified the gas adsorption sites in the three top-performing COFs commonly identified for each mixture by DFT calculations and computed the binding strength of gases, which were found to be on the order of C2H6 > CH4 > N-2 > H-2, supporting the GCMC results. Nucleus-independent chemical shift (NICS) indexes of aromaticity for adsorption sites were calculated, and the results revealed that the degree of linker aromaticity could be a measure for the selection or design of highly alkane-selective COF adsorbents over N-2 and H-2. Finally, COF membranes were shown to achieve high H-2 permeabilities, 4.57 x 10(3)-1.25 x 10(6) Barrer, and decent membrane selectivities, as high as 4.3, outperforming polymeric and MOF-based membranes for separation of H-2 from CH4.
  • Thumbnail Image
    PublicationOpen Access
    Flexural wave-based soft attractor walls for trapping microparticles and cells
    (Royal Society of Chemistry (RSC), 2021) Aghakhani, Amirreza; Çetin, Hakan; Erkoç, Pelin; Tombak, Güney Işık; Department of Mechanical Engineering; Sitti, Metin; Faculty Member; Department of Mechanical Engineering; College of Engineering; School of Medicine
    Acoustic manipulation of microparticles and cells, called acoustophoresis, inside microfluidic systems has significant potential in biomedical applications. In particular, using acoustic radiation force to push microscopic objects toward the wall surfaces has an important role in enhancing immunoassays, particle sensors, and recently microrobotics. In this paper, we report a flexural-wave based acoustofluidic system for trapping micron-sized particles and cells at the soft wall boundaries. By exciting a standard microscope glass slide (1 mm thick) at its resonance frequencies <200 kHz, we show the wall-trapping action in sub-millimeter-size rectangular and circular cross-sectional channels. For such low-frequency excitation, the acoustic wavelength can range from 10–150 times the microchannel width, enabling a wide design space for choosing the channel width and position on the substrate. Using the system-level acousto-structural simulations, we confirm the acoustophoretic motion of particles near the walls, which is governed by the competing acoustic radiation and streaming forces. Finally, we investigate the performance of the wall-trapping acoustofluidic setup in attracting the motile cells, such as Chlamydomonas reinhardtii microalgae, toward the soft boundaries. Furthermore, the rotation of microalgae at the sidewalls and trap-escape events under pulsed ultrasound are demonstrated. The flexural-wave driven acoustofluidic system described here provides a biocompatible, versatile, and label-free approach to attract particles and cells toward the soft walls.
  • Thumbnail Image
    PublicationOpen Access
    Blue TiO2 nanotube arrays as semimetallic materials with enhanced photoelectrochemical activity towards water splitting
    (TÜBİTAK, 2020) Department of Chemistry; Peighambardoust, Naeimeh Sadat; Aydemir, Umut; Researcher; Faculty Member; Department of Chemistry; Koç University AKKİM Boron-Based Materials _ High-technology Chemicals Research _ Application Center (KABAM) / Koç Üniversitesi AKKİM Bor Tabanlı Malzemeler ve İleri Teknoloji Kimyasallar Uygulama ve Araştırma Merkezi (KABAM); College of Sciences; N/A; 58403
    In the past years there has been a great interest in self-doped TiO2 nanotubes (blue TiO2 nanotubes) compared to undoped ones owing to their high carrier density and conductivity. In this study, blue TiO2 nanotubes are investigated as photoanode materials for photoelectrochemical water splitting. Blue TiO2 nanotubes were fabricated with enhanced photoresponse behavior through electrochemical cathodic polarization on undoped and annealed TiO2 nanotubes. The annealing temperature of undoped TiO2 nanotubes was tuned before cathodic polarization, revealing that annealing at 500 degrees C improved the photoresponse of the nanotubes significantly. Further optimization of the blue TiO2 nanotubes was achieved by adjusting the cathodic polarization parameters. Blue TiO2 nanotubes obtained at the potential of -1.4 V (vs. SCE) with a duration of 10 min exhibited twice more photocurrent response (0.39 mA cm(-2)) compared to the undoped TiO(2 )nanotube arrays (0.19 mA cm(-2)). Oxygen vacancies formed through the cathodic polarization decreased charge recombination and enhanced charge transfer rate; therefore, a high photoelectrochemical activity under visible light irradiation could be achieved.
  • Thumbnail Image
    PublicationOpen Access
    Molecular simulations of MOF membranes and performance predictions of MOF/polymer mixed matrix membranes for CO2/CH4 separations
    (American Chemical Society (ACS), 2019) Department of Chemical and Biological Engineering; Keskin, Seda; Altıntaş, Çiğdem; Researcher; Department of Chemical and Biological Engineering; Graduate School of Sciences and Engineering; 40548; N/A
    Efficient separation of CO2 from CO2/CH4 mixtures using membranes has economic, environmental and industrial importance. Membrane technologies are currently dominated by polymers due to their processing abilities and low manufacturing costs. However, polymeric membranes suffer from either low gas permeabilities or low selectivities. Metal organic frameworks (MOFs) are suggested as potential membrane candidates that offer both high selectivity and permeability for CO2/CH4 separation. Experimental testing of every single synthesized MOF material as membranes is not practical due to the availability of thousands of different MOF materials. A multilevel, high-throughput computational screening methodology was used to examine the MOF database for membrane-based CO2/CH4 separation. MOF membranes offering the best combination of CO2 permeability (>10(6) Barrer) and CO2/CH4 selectivity (>80) were identified by combining grand canonical Monte Carlo and molecular dynamics simulations. Results revealed that the best MOF membranes are located above the Robeson's upper bound indicating that they outperform polymeric membranes for CO2/CH4 separation. The impact of framework flexibility on the membrane properties of the selected top MOFs was studied by comparing the results of rigid and flexible molecular simulations. Relations between structures and performances of MOFs were also investigated to provide atomic-level insights into the design of novel MOFs which will be useful for CO2/CH4 separation processes. We also predicted permeabilities and selectivities of the mixed matrix membranes (MMM) in which the best MOF candidates are incorporated as filler particles into polymers and found that MOF-based MMMs have significantly higher CO2 permeabilities and moderately higher selectivities than pure polymers.
  • Thumbnail Image
    PublicationOpen Access
    3D-printed multi-stimuli-responsive mobile micromachines
    (American Chemical Society (ACS), 2020) Lee, Yun-Woo; Ceylan, Hakan; Yasa, İmmihan Ceren; Department of Mechanical Engineering; Kılıç, Uğur; Sitti, Metin; Faculty Member; Department of Mechanical Engineering; School of Medicine; College of Engineering
    Magnetically actuated and controlled mobile micromachines have the potential to be a key enabler for various wireless lab-on-a-chip manipulations and minimally invasive targeted therapies. However, their embodied, or physical, task execution capabilities that rely on magnetic programming and control alone can curtail their projected performance and functional diversity. Integration of stimuli-responsive materials with mobile magnetic micromachines can enhance their design toolbox, enabling independently controlled new functional capabilities to be defined. To this end, here, we show three-dimensional (3D) printed size-controllable hydrogel magnetic microscrews and microrollers that respond to changes in magnetic fields, temperature, pH, and divalent cations. We show two-way size-controllable microscrews that can reversibly swell and shrink with temperature, pH, and divalent cations for multiple cycles. We present the spatial adaptation of these microrollers for penetration through narrow channels and their potential for controlled occlusion of small capillaries (30 μm diameter). We further demonstrate one-way size-controllable microscrews that can swell with temperature up to 65% of their initial length. These hydrogel microscrews, once swollen, however, can only be degraded enzymatically for removal. Our results can inspire future applications of 3D- and 4D-printed multifunctional mobile microrobots for precisely targeted obstructive interventions (e.g., embolization) and lab- and organ-on-a-chip manipulations.