Publications with Fulltext

Permanent URI for this collectionhttps://hdl.handle.net/20.500.14288/6

Browse

Search Results

Now showing 1 - 9 of 9
  • Thumbnail Image
    PublicationOpen Access
    Dimerization of pyrrole
    (TÜBİTAK, 1998) Yurtsever, Mine; Department of Chemistry; Yurtsever, İsmail Ersin; Faculty Member; Department of Chemistry; College of Sciences; 7129
    Accurate ab-inito quantum mechanical calculations of pyrrole dimers are reported. The thermodynamical stabilities of dimers with alpha - alpha, alpha -beta, and beta - beta type linkages are compared in order to predict the possibilities of branching in polypyrroles. Calculations employing large basis sets and including electron correlation effects predict the alpha - alpha dimers as the most stable form. However, an alpha - beta type bonding requires only 1.5-2.0 kcal/mol, and the energy necessary to introduce a beta - beta type bond is 3.6-4.0 kcal/mol. These values show that a high degree of branching is possible even at room temperatures.
  • Thumbnail Image
    PublicationOpen Access
    CO2 absorption into primary and secondary amine aqueous solutions with and without copper ions in a bubble column
    (TÜBİTAK, 2022) Güler, Cansu; Uzunlar, Erdal; Department of Chemical and Biological Engineering; Erkey, Can; Yousefzadeh, Hamed; Faculty Member; Researcher; Department of Chemical and Biological Engineering; College of Engineering; 29633; N/A
    Chemical absorption of CO2 into aqueous amine solutions using a nonstirred bubble column was experimentally investigated. The performance of CO2 absorption of four different primary and secondary amines including monoethanolamine (MEA), piperazine (PZ), 2-piperidineethanol (2PE), and homopiperazine (HPZ) were compared. The effects of initial concentration of amine, the inlet mole fraction of CO2, and solution temperature on the rate of CO2 absorption and CO2 loading (mol CO2/mol amine) were studied in the range of 0.02–1 M, 0.10–0.15, and 25–40 °C, respectively. The effect of the presence of copper ions in the amine solution on CO2 loading was also studied. By comparison of the breakthrough curves of the amines at different operational conditions, it was revealed that the shortest and longest time for the appearance of the breakthrough point was observed for MEA and HPZ solutions, respectively. CO2 loading of MEA, 2PE, PZ, and HPZ aqueous solutions at 25 °C, 0.2 M of initial concentration of amine, and 0.15 of inlet mole fraction of CO2 were 1.06, 1.14, 1.13, and 1.18 mol CO2/mol amine, respectively. By decreasing the inlet mole fraction of CO2 from 0.15 to 0.10, CO2 loading slightly decreased. As the initial concentration of amine and temperature decreased, CO2 loading increased. Also, the presence of copper ions in the absorbent solution resulted in a decrease in the CO2 loading of MEA and HPZ aqueous solutions. In case of PZ and 2PE amines, adding copper ions led to precipitation even at low copper ion concentrations.
  • Thumbnail Image
    PublicationOpen Access
    The structure of 1,3-butadiene clusters: benchmarking the density-functional based tight-binding method and finite temperature properties
    (Springer, 2021) Douady, J.; Simon, A.; Rapacioli, M.; Calvo, F.; Tekin, A.; Department of Chemistry; Yurtsever, İsmail Ersin; Faculty Member; Department of Chemistry; College of Sciences; 7129
    Molecular clusters of 1,3-butadiene were theoretically investigated using a variety of approaches, encompassing classical force fields and different quantum chemical (QC) methods, as well as density-functional-based tight-binding (DFTB) in its self-consistent-charge (SCC) version. Upon suitable reparametrization, SCC-DFTB reproduces the energy difference and torsional barrier of the trans and gauche conformers of the 1,3-butadiene monomer predicted at the QC level. Clusters of pure trans and gauche conformers containing up to 20 monomers were studied separately, their energy landscapes being explored using the force fields, then locally reoptimized using DFT or SCC-DFTB. The all-trans clusters are generally found to be lower in energy and produce well-ordered structures in which the planar molecules are arranged according to a herringbone motif. Clusters of molecules in the gauche configuration are comparatively much more isotropic. Mixed clusters containing a single gauche molecule were also studied and found to keep the herringbone motif, the gauche impurity usually residing outside. In those clusters, the strain exerted by the cluster on the gauche molecule leads to significant geometrical distortion of the dihedral angle already at zero temperature. Finally, the finite temperature properties were addressed at the force field level, and the results indicate that the more ordered all-trans clusters are also prone to sharper melting mechanisms.
  • Thumbnail Image
    PublicationOpen Access
    Blue TiO2 nanotube arrays as semimetallic materials with enhanced photoelectrochemical activity towards water splitting
    (TÜBİTAK, 2020) Department of Chemistry; Peighambardoust, Naeimeh Sadat; Aydemir, Umut; Researcher; Faculty Member; Department of Chemistry; Koç University AKKİM Boron-Based Materials _ High-technology Chemicals Research _ Application Center (KABAM) / Koç Üniversitesi AKKİM Bor Tabanlı Malzemeler ve İleri Teknoloji Kimyasallar Uygulama ve Araştırma Merkezi (KABAM); College of Sciences; N/A; 58403
    In the past years there has been a great interest in self-doped TiO2 nanotubes (blue TiO2 nanotubes) compared to undoped ones owing to their high carrier density and conductivity. In this study, blue TiO2 nanotubes are investigated as photoanode materials for photoelectrochemical water splitting. Blue TiO2 nanotubes were fabricated with enhanced photoresponse behavior through electrochemical cathodic polarization on undoped and annealed TiO2 nanotubes. The annealing temperature of undoped TiO2 nanotubes was tuned before cathodic polarization, revealing that annealing at 500 degrees C improved the photoresponse of the nanotubes significantly. Further optimization of the blue TiO2 nanotubes was achieved by adjusting the cathodic polarization parameters. Blue TiO2 nanotubes obtained at the potential of -1.4 V (vs. SCE) with a duration of 10 min exhibited twice more photocurrent response (0.39 mA cm(-2)) compared to the undoped TiO(2 )nanotube arrays (0.19 mA cm(-2)). Oxygen vacancies formed through the cathodic polarization decreased charge recombination and enhanced charge transfer rate; therefore, a high photoelectrochemical activity under visible light irradiation could be achieved.
  • Thumbnail Image
    PublicationOpen Access
    Investigation of performances of commercial diesel oxidation catalysts for CO, C3H6, and NO oxidation
    (TÜBİTAK, 2021) Yıldız, Deniz Şanlı; Özener, Hüseyin Barkın; Hisar, Gökhan; Department of Chemical and Biological Engineering; Güneş, Hande; Bozbağ, Selmi Erim; Erkey, Can; Researcher; Faculty Member; Department of Chemical and Biological Engineering; College of Engineering; N/A; N/A; 29633
    Four commercial monolithic diesel oxidation catalysts (DOCs) with two different platinum group metal (PGM) loadings and Pt:Pd ratios of 1:0, 2:1, 3:1 (w/w) were investigated systematically for CO, C3H6, and NO oxidation, CO-C3H6 co-oxidation, and CO-C3H6-NO oxidation reactions via transient activity measurements in a simulated diesel engine exhaust environment. As PGM loading increased, light-off curves shifted to lower temperatures for individual and co-oxidation reactions of CO and C3H6. CO and C3H6 were observed to inhibit the oxidation of themselves and each other. Addition of Pd to Pt was found to enhance CO and C3H6 oxidation performance of the catalysts while the presence and amount of Pd was found to increase the extent of self-inhibition of NO oxidation. NO inhibited CO and C3H6 oxidation reactions while NO oxidation performance was enhanced in the presence of CO and C3H6 probably due to the occurrence of reduced Pt and Pd sites during CO and C3H6 oxidations. The optimum Pt:Pd ratio for individual and co-oxidations of CO, C3H6, and NO was found to be Pt:Pd = 3:1 (w/w) in the range of experimental conditions investigated in this study.
  • Thumbnail Image
    PublicationOpen Access
    Effects of timolol treatment on pancreatic antioxidant enzymes in streptozotocin-induced diabetic rats: an experimental and computational study
    (Sciendo, 2019) Gök, Müslüm; Turan, Belma; N/A; Department of Chemical and Biological Engineering; Ulusu, Nuriye Nuray; Erman, Burak; Faculty Member; Faculty Member; Department of Chemical and Biological Engineering; School of Medicine; College of Engineering; 6807; 179997
    Background: the study aimed to investigate whether timolol-treatment has a beneficial effect on pentose phosphate pathway enzyme activities such as glucose-6-phosphate dehydrogenase (G6PD), 6-phosphogluconate dehydrogenase (6PGDH) enzyme activities and cAMP level in streptozotocin-induced diabetic rats in pancreatic tissues. Methods: diabetes was induced by streptozotocin (STZ) in 3-month old male Wistar rats. The diabetic rats were treated with timolol (5 mg/kg body weight, for 12 weeks) while the control group received saline. Enzyme activities were determined in pancreas tissue. To support our results, we performed in silico calculations, using Protein Data Bank structures. Results: timolol treatment of STZ-induced diabetic rats had no noteworthy effect on high blood-glucose levels. However, this treatment induced activities of G6PD and 6PGDH in diabetic rats. Timolol treatment significantly increased cAMP level in diabetic pancreatic tissue. We found that timolol cannot bind strongly to either G6PD or 6PGD, but there is a relatively higher binding affinity to adenylyl cyclase, responsible for cAMP production, serving as a regulatory signal via specific cAMP-binding proteins. Conclusions: our data point out that timolol treatment has beneficial effects on the antioxidant defence mechanism enzymes in the pancreas of STZ-induced diabetic rats. / Uvod: cilj istrazivanja je bio da se utvrdi da li tretman timololom ima pozitivan efekat na aktivnosti enzima pentoze fosfata, kao sto su aktivnosti glukoze-6-fosfat dehidrogenaze (G6PD), enzimske aktivnosti 6-fosfoglukonat dehidrogenaze i cAMP nivo u tkivu pankreasa kod pacova kojima je dijabetes izazvan streptozotocionom. Metode: dijabetes je izazvan streptozotocionom (STZ) kod tromesecnih muzjaka vistar pacova. Pacovi sa dijabetesom su tretirani timololom (5 mg/kg telesne tezine tokom 12 nedelja), dok je kontrolna grupa primila fizioloski rastvor. Enzimske aktivnosti su utvrivane u tkivu pankreasa. Da bismo potkrepili nase rezultate, sproveli smo in silico racunanja koristeci strukture Proteinske baze podataka. Rezultati: tretman timololom na pacovima kojima je dijabetes izazvan putem STZ-a nije imao znacajan uticaj na visoke nivoe glukoze u krvi. Medutim, kod takvih pacova ovaj tretman je indukovao aktivnosti G6PD i 6PGDH. Lecenje timololom znacajno je povecalo nivo cAMP-a u dijabeticnom tkivu pankreasa. Utvrdili smo da se timolol ne moze snazno vezati ni za G6PD, ni za 6PGD, ali da postoji relativno veci afinitet vezivanja za adenilil ciklazu, odgovornu za proizvodnju cAMP, koja sluzi kao regulatorni signal putem odredenih cAMP vezivnih proteina. Zakljucak: nasi podaci ukazuju da tretman timololom ima pozitivne efekte na antioksidantne enzime od brambenog sistema u pankreasu pacova sa dijebetesom izazvanim putem STZ-a.
  • Thumbnail Image
    PublicationOpen Access
    One-pot synthesis of graphene hydrogel-anchored cobalt-copper nanoparticles and their catalysis in hydrogen generation from ammonia borane
    (TÜBİTAK, 2021) Zaier, Ibtihel; Department of Chemistry; Metin, Önder; Faculty Member; Department of Chemistry; College of Sciences; 46962
    We reported a facile one-pot synthesis of bimetallic CoCu nanoparticles (NPs) anchored on graphene hydrogel (GH-CoCu) as catalysts in hydrogen generation from the hydrolysis of ammonia borane (HAB). The presented novel one-pot method composed of the reduction of the mixture of graphene oxide, cobalt(II), and copper(II) acetate tetrahydrates by aqueous ethylene glycol solution in a teflon-coated stainless-steel reactor at 180 degrees C. The structure of the yielded GH-CoCu nanocatalysts were characterized by TEM, SEM, XRD, XPS, and ICP-MS. This is the first example of both the synthesis of bimetallic CoCu NPs anchored on GH and the testing of a hydrothermally prepared noble metal-free GH-bimetallic nanocomposites as catalysts for the HAB. The presented in situ synthesis protocol allowed us to prepare different metal compositions and investigating their catalysis in the AB hydrolysis, where the best catalytic activity was accomplished by the GH-Co33Cu67 nanocatalysts. The obtained GH-CoCu nanocatalysts exhibited a remarkable catalytic performance in the HAB by providing the highest hydrogen generation rate of 1015.809 ml H-2 g(catalyst)(-1) min(-1) at room temperature. This study has a potential to pave a way for the development of other GH-based bimetallic nanocatalysts that could be used in different applications.
  • Thumbnail Image
    PublicationOpen Access
    Electrophoretic deposition and characterization of self-doped SrTiO3 thin films
    (TÜBİTAK, 2021) Department of Chemistry; Peighambardoust, Naeimeh Sadat; Aydemir, Umut; Researcher; Faculty Member; Department of Chemistry; Koç University AKKİM Boron-Based Materials _ High-technology Chemicals Research _ Application Center (KABAM) / Koç Üniversitesi AKKİM Bor Tabanlı Malzemeler ve İleri Teknoloji Kimyasallar Uygulama ve Araştırma Merkezi (KABAM); College of Sciences; N/A; 58403
    Herein, titanium (Ti3+) self-doped strontium titanate (SrTiO3), so-called blue SrTiO3, with a bandgap of 2.6 eV and favorable photocatalytic characteristics was fabricated through a facile and effective method. For electrochemical investigations, the electrophoretic deposition was applied to produce SrTiO3 thin films on (fluorine-doped tin oxide) FTO conductive substrates. The electrophoretic voltage of 20 V and a process duration of 10 min were optimized to reach transparent and uniform coatings on FTO. The blue SrTiO3 reveals lower resistance (charge transfer resistance of 6.38 cm-2) and higher electron mobility (current density value of 0.25 mA cm-2) compared to a pure SrTiO3 electrode. These findings may provide new insights for developing high-performance visible light photocatalysts.
  • Thumbnail Image
    PublicationOpen Access
    Thermal stabilities of hydroxyalkyl terminated polydimethylsiloxane oligomers
    (TÜBİTAK, 1997) Department of Chemistry; Yılgör, Emel; Yılgör, İskender; Researcher; Faculty Member; Department of Chemistry; College of Sciences; 40527; 24181
    The thermal stabilities of alpha,omega-hydroxypropyl, alpha,omega-hydroxybutyl alpha,omega-2-hydroxypentyl and alpha,omega-hydroxyhexyl terminated polydimethylsiloxane oligomers were investigated. Hydroxypropyl and hydroxybutyl terminated polydimethylsiloxane oligomers showed degradation upon heating through the loss of functional end groups, as determined by FTIR spectroscopy and gel permeation chromatography. alpha,omega-Hydroxyhexyl and alpha,omega-2-hydroxypentyl terminated polydimethylsiloxane oligomers were stable under similar conditions. The instability of the end groups is due to the backbiting of the terminal silicon in the PDMS by the primary hydroxyl oxygen, leading to the formation of 5- and 6-membered stable, heterocylic compounds. Loss of end groups also resulted in a dramatic increase in the molecular weights of the oligomers produced, as determined by GPC.