Publications with Fulltext
Permanent URI for this collectionhttps://hdl.handle.net/20.500.14288/6
Browse
3 results
Search Results
Publication Open Access Emergence of near-infrared photoluminescence via ZnS shell growth on the AgBiS2 nanocrystals(American Chemical Society, 2024) Department of Chemistry; Department of Electrical and Electronics Engineering; Önal, Asım; Kaya, Tarık Safa; Metin, Önder; Nizamoğlu, Sedat; Department of Chemistry; Department of Electrical and Electronics Engineering; Graduate School of Sciences and Engineering; College of Sciences; College of EngineeringAgBiS2 nanocrystals (NCs), composed of nontoxic, earth-abundant materials and exhibiting an exceptionally high absorption coefficient from visible to near-infrared (>105 cm(-1)), hold promise for photovoltaics but have lack of photoluminescence (PL) due to intrinsic nonradiative recombination and challenging shell growth. In this study, we reported a facile wet-chemical approach for the epitaxial growth of ZnS shell on AgBiS2 NCs, which triggered the observation of PL emission in the near-infrared (764 nm). Since high quality of the core is critical for epitaxial shell growth, we first obtained rock-salt structured AgBiS2 NCs with high crystallinity, nearly spherical shape and monodisperse size distribution (<6%) via a dual-ligand approach reacting Ag-Bi oleate with elemental sulfur in oleylamine. Next, a zincblende ZnS shell with a low-lattice mismatch of 4.9% was grown on as-prepared AgBiS2 NCs via a highly reactive zinc (Zn(acac)(2)) precursor that led to a higher photoluminescence quantum yield (PLQY) of 15.3%, in comparison with a relatively low reactivity precursor (Zn(ac)(2)) resulting in reduced PLQY. The emission from AgBiS2 NCs with ultrastrong absorption, facilitated by shell growth, can open up new possibilities in lighting, display, and bioimaging.Publication Open Access Bosonic helium droplets with cationic impurities: onset of electrostriction and snowball effects from quantum calculations(American Institute of Physics (AIP) Publishing, 2007) Coccia, E.; Bodo, E.; Marinetti, F.; Gianturco, F. A.; Yıldırım, E.; Yurtsever, M.; Department of Chemistry; Yurtsever, İsmail Ersin; Faculty Member; Department of Chemistry; College of Sciences; 7129Variational Monte Carlo and diffusion Monte Carlo calculations have been carried out for cations such as Li(+), Na(+), and K(+) as dopants of small helium clusters over a range of cluster sizes up to about 12 solvent atoms. The interaction has been modeled through a sum-of-potential picture that disregards higher order effects beyond atom-atom and atom-ion contributions. The latter were obtained from highly correlated ab initio calculations over a broad range of interatomic distances. This study focuses on two of the most striking features of the microsolvation in a quantum solvent of a cationic dopant: electrostriction and snowball effects. They are discussed here in detail and in relation with the nanoscopic properties of the interaction forces at play within a fully quantum picture of the cluster features.Publication Open Access Composites of porous materials with ionic liquids: synthesis, characterization, applications, and beyond(Elsevier, 2022) Department of Chemical and Biological Engineering; Durak, Özce; Zeeshan, Muhammad; Habib, Nitasha; Gülbalkan, Hasan Can; Alsuhile, Ala Abdulalem Abdo Moqbel; Çağlayan, Hatice Pelin; Öztulum, Samira Fatma Kurtoğlu; Zhao, Yuxin; Haşlak, Zeynep Pınar; Uzun, Alper; Keskin, Seda; PhD Student; PhD Student; Faculty Member; Department of Chemical and Biological Engineering; Koç University Tüpraş Energy Center (KUTEM) / Koç Üniversitesi Tüpraş Enerji Merkezi (KÜTEM); Koç University Surface Science and Technology Center (KUYTAM) / Koç Üniversitesi Yüzey Teknolojileri Araştırmaları Merkezi (KUYTAM); College of Engineering; Graduate School of Sciences and Engineering; N/A; N/A; N/A; N/A; N/A; N/A; N/A; N/A; N/A; 59917; 40548Modification of the physicochemical properties of porous materials by using ionic liquids (ILs) has been widely studied for various applications. The combined advantages of ILs and porous materials provide great potential in gas adsorption and separation, catalysis, liquid-phase adsorption and separation, and ionic conductivity owing to the superior performances of the hybrid composites. In this review, we aimed to provide a perspective on the evolution of IL/porous material composites as a research field by discussing several different types of porous materials, including metal organic frameworks (MOFs), covalent organic frameworks (COFs), zeolites, and carbonaceous-materials. The main challenges and opportunities in synthesis methods, characterization techniques, applications, and future opportunities of IL/porous materials are discussed in detail to create a road map for the area. Future advances of the field addressed in this review will provide in-depth insights into the design and development of these novel hybrid materials and their replacement with conventional materials.