Research Outputs

Permanent URI for this communityhttps://hdl.handle.net/20.500.14288/2

Browse

Search Results

Now showing 1 - 10 of 12
  • Placeholder
    Publication
    Computational analysis of the binding free energy of H3K9ME3 peptide to the tandem tudor domains of JMJD2A
    (IEEE, 2010) N/A; Department of Chemical and Biological Engineering; Department of Computer Engineering; Department of Chemical and Biological Engineering; N/A; Keskin, Özlem; Gürsoy, Attila; Erman, Burak; Özboyacı, Musa; Faculty Member; Faculty Member; Faculty Member; PhD Student; Department of Computer Engineering; Department of Chemical and Biological Engineering; College of Engineering; College of Engineering; College of Engineering; Graduate School of Sciences and Engineering; 26605; 8745; 179997; N/A
    JMJD2A is a histone lysine demethylase enzyme which plays a prominent role in the development of prostate and esophageal squamous cancers. Consisting of a JmjC, a JmjN, two PHD and two tandem tudor domains, JMJD2A recognizes and binds to four different methylated histone peptides: H3K4me3, H4K20me3, H4K20me2 and H3K9me3, via its tudor domains. Of the four histone peptides, only recognition of the H3K4me3 and H4K20me3 by JMJD2A-tudor has been identified. In this study, we investigated the recognition of trimethylated H3K9 by the tandem tudor domains of JMJD2A. Using the molecular dynamics simulations, we performed normal mode and molecular mechanics - Poisson Boltzmann / generalized born - surface area (MM-PB/GB-SA) analysis to find the entropic and enthalpic contributions to binding free energy respectively. We showed that binding of the ligand is mainly driven by favorable van der Waals interactions made after complexation. Our findings suggest that, upon complex formation, H3K9me3 peptide adopts a similar binding mode and the same orientation with H3K4me3 peptide.
  • Placeholder
    Publication
    dentification of potential inhibitors of human methionine aminopeptidase (type II) for cancer therapy: Structure-based virtual screening, ADMET prediction and molecular dynamics studies
    (Elsevier Sci Ltd, 2020) Weako, Jackson; Uba, Abdullahi İbrahim; Yelekçi, Kemal; Department of Chemical and Biological Engineering; Department of Computer Engineering; Keskin, Özlem; Gürsoy, Attila; Faculty Member; Faculty Member; Department of Chemical and Biological Engineering; Department of Computer Engineering; The Center for Computational Biology and Bioinformatics (CCBB); College of Engineering; College of Engineering; 26605; 8745
    Methionine Aminopeptidases MetAPs are divalent-cofactor dependent enzymes that are responsible for the cleavage of the initiator Methionine from the nascent polypeptides. MetAPs are classified into two isoforms: namely, MetAP1 and MetAP2. Several studies have revealed that MetAP2 is upregulated in various cancers, and its inhibition has shown to suppress abnormal or excessive blood vessel formation and tumor growth in model organisms. Clinical studies show that the natural product fumagillin, and its analogs are potential inhibitors of MetAP2. However, due to their poor pharmacokinetic properties and neurotoxicities in clinical studies, their further developments have received a great setback. Here, we apply structure-based virtual screening and molecular dynamics methods to identify a new class of potential inhibitors for MetAP2. We screened Otava's Chemical Library, which consists of about 3 200 000 tangible-chemical compounds, and meticulously selected the top 10 of these compounds based on their inhibitory potentials against MetAP2. The top hit compounds subjected to ADMET predictor using 3 independent ADMET prediction programs, were found to be drug-like. To examine the stability of ligand binding mode, and efficacy, the unbound form of MetAP2, its complexes with fumagillin, spiroepoxytriazole, and the best promising compounds compound-3369841 and compound-3368818 were submitted to 100 ns molecular dynamics simulation. Like fumagillin, spiroepoxytriazole, and both compound-3369841 and compound-3368818 showed stable binding mode over time during the simulations. Taken together, these uninherited-fumagillin compounds may serve as new class of inhibitors or provide scaffolds for further optimization towards the design of more potent MetAP2 inhibitors -development of such inhibitors would be essential strategy against various cancer types.
  • Placeholder
    Publication
    Determination of the correspondence between mobility (rigidity) and conservation of the interface residues
    (IEEE, 2010) N/A; Department of Chemical and Biological Engineering; Department of Computer Engineering; N/A; Keskin, Özlem; Gürsoy, Attila; Makinacı, Gözde Kar; Faculty Member; Faculty Member; PhD Student; Department of Chemical and Biological Engineering; Department of Computer Engineering; College of Engineering; College of Engineering; Graduate School of Sciences and Engineering; 26605; 8745; N/A
    Hot spots at protein interfaces may play specific functional roles and contribute to the stability of the protein complex. These residues are not homogeneously distributed along the protein interfaces; rather they are clustered within locally tightly packed regions forming a network of interactions among themselves. Here, we investigate the organization of computational hot spots at protein interfaces. A list of proteins whose free and bound forms exist is examined. Inter-residue distances of the interface residues are compared for both forms. Results reveal that there exist rigid block regions at protein interfaces. More interestingly, these regions correspond to computational hot regions. Hot spots can be determined with an average positive predictive value (PPV) of 0.73 and average sensitivity value of 0.70 for seven protein complexes.
  • Thumbnail Image
    PublicationOpen Access
    HMI-PRED 2.0: a biologist-oriented web application for prediction of host-microbe protein-protein interaction by interface mimicry
    (Oxford University Press (OUP), 2022) Lim, H., Tsai, C.J.; Nussinov, R.; Department of Computer Engineering; Department of Chemical and Biological Engineering; Keskin, Özlem; Gürsoy, Attila; Faculty Member; Department of Computer Engineering; Department of Chemical and Biological Engineering; College of Engineering; 26605; 8745
    HMI-PRED 2.0 is a publicly available web service for the prediction of host-microbe protein-protein interaction by interface mimicry that is intended to be used without extensive computational experience. A microbial protein structure is screened against a database covering the entire available structural space of complexes of known human proteins.
  • Thumbnail Image
    PublicationOpen Access
    Human CRY1 variants associate with attention deficit/hyperactivity disorder
    (American Society for Clinical Investigation (ASCI), 2020) Onat, O. Emre; Kars, M. Ece; Bilguvar, Kaya; Wu, Yiming; Özhan, Ayşe; Trusso, M. Allegra; Goracci, Arianna; Fallerini, Chiara; Renieri, Alessandra; Casanova, Jean Laurent; Itan, Yuval; Atbaşoğlu, Cem E.; Saka, Meram C.; Özçelik, Tayfun; Department of Chemical and Biological Engineering; Department of Molecular Biology and Genetics; Gül, Şeref; Aydın, Cihan; Başak, Ayşe Nazlı; Kavaklı, İbrahim Halil; Researcher; Researcher; Faculty Member; Faculty Member; Department of Chemical and Biological Engineering; Department of Molecular Biology and Genetics; Koç University Research Center for Translational Medicine (KUTTAM) / Koç Üniversitesi Translasyonel Tıp Araştırma Merkezi (KUTTAM); Graduate School of Sciences and Engineering; College of Engineering; College of Sciences; N/A; 214696; 1512; 40319
    Attention deficit/hyperactivity disorder (ADHD) is a common and heritable phenotype frequently accompanied by insomnia, anxiety, and depression. Here, using a reverse phenotyping approach, we report heterozygous coding variations in the core circadian clock gene cryptochrome 1 in 15 unrelated multigenerational families with combined ADHD and insomnia. The variants led to functional alterations in the circadian molecular rhythms, providing a mechanistic link to the behavioral symptoms. One variant, CRY1Δ11 c.1657+3A>C, is present in approximately 1% of Europeans, therefore standing out as a diagnostic and therapeutic marker. We showed by exome sequencing in an independent cohort of patients with combined ADHD and insomnia that 8 of 62 patients and 0 of 369 controls carried CRY1Δ11. Also, we identified a variant, CRY1Δ6 c.825+1G>A, that shows reduced affinity for BMAL1/CLOCK and causes an arrhythmic phenotype. Genotype-phenotype correlation analysis revealed that this variant segregated with ADHD and delayed sleep phase disorder (DSPD) in the affected family. Finally, we found in a phenome-wide association study involving 9438 unrelated adult Europeans that CRY1Δ11 was associated with major depressive disorder, insomnia, and anxiety. These results defined a distinctive group of circadian psychiatric phenotypes that we propose to designate as "circiatric" disorders.
  • Thumbnail Image
    PublicationOpen Access
    In silico drug repositioning against human NRP1 to block SARS-CoV-2 host entry
    (TÜBİTAK, 2021) Department of Chemical and Biological Engineering; Gül, Şeref; Researcher; Department of Chemical and Biological Engineering; Graduate School of Sciences and Engineering
    Despite COVID-19 turned into a pandemic, no approved drug for the treatment or globally available vaccine is out yet. In such a global emergency, drug repurposing approach that bypasses a costly and long-time demanding drug discovery process is an effective way in search of finding drugs for the COVID-19 treatment. Recent studies showed that SARS-CoV-2 uses neuropilin-1 (NRP1) for host entry. Here we took advantage of structural information of the NRP1 in complex with C-terminal of spike (S) protein of SARSCoV-2 to identify drugs that may inhibit NRP1 and S protein interaction. U.S. Food and Drug Administration (FDA) approved drugs were screened using docking simulations. Among top drugs, well-tolerated drugs were selected for further analysis. Molecular dynamics (MD) simulations of drugs-NRP1 complexes were run for 100 ns to assess the persistency of binding. MM/GBSA calculations from MD simulations showed that eltrombopag, glimepiride, sitagliptin, dutasteride, and ergotamine stably and strongly bind to NRP1. In silico Alanine scanning analysis revealed that Tyr(297), Trp(301), and Tyr(353) amino acids of NRP1 are critical for drug binding. Validating the effect of drugs analyzed in this paper by experimental studies and clinical trials will expedite the drug discovery process for COVID-19.
  • Placeholder
    Publication
    Interaction prediction of PDZ domains using a machine learning approach
    (IEEE, 2010) N/A; Department of Chemical and Biological Engineering; Department of Computer Engineering; N/A; Keskin, Özlem; Gürsoy, Attila; Kalyoncu, Sibel; Faculty Member; Faculty Member; Master Student; Department of Chemical and Biological Engineering; Department of Computer Engineering; College of Engineering; College of Engineering; Graduate School of Sciences and Engineering; 26605; 8745; N/A
    Protein interaction domains play crucial roles in many complex cellular pathways. PDZ domains are one of the most common protein interaction domains. Prediction of binding specificity of PDZ domains by a computational manner could eliminate unnecessary, time-consuming experiments. In this study, interactions of PDZ domains are predicted by using a machine learning approach in which only primary sequences of PDZ domains and peptides are used. In order to encode feature vectors for each interaction, trigram frequencies of primary sequences of PDZ domains and corresponding peptides are calculated. After construction of numerical interaction dataset, we compared different classifiers and ended up with Random Forest (RF) algorithm which gave the top performance. We obtained very high prediction accuracy (91.4%) for binary interaction prediction which outperforms all previous similar methods.
  • Placeholder
    Publication
    Mathematical modeling of Behçet's disease: a dynamical systems approach
    (World Scientific Publ Co Pte Ltd, 2015) Gül, Ahmet; N/A; N/A; Department of Chemical and Biological Engineering; Department of Electrical and Electronics Engineering; Erdem, Cemal; Bozkurt, Yasemin; Erman, Burak; Demir, Alper; Master Student; PhD Student; Faculty Member; Faculty Member; Department of Chemical and Biological Engineering; Department of Electrical and Electronics Engineering; N/A; Graduate School of Sciences and Engineering; College of Engineering; College of Engineering; N/A; N/A; 179997; 3756
    Behcet's Disease (BD) is a multi-systemic, auto-inflammatory disorder that is characterized by recurrent episodes of inflammatory manifestations affecting skin, mucosa, eyes, blood vessels, joints and several other organs. BD is classified as a multifactorial disease with an important contribution of genetics. Genetic studies suggest that there is a strong association of BD with a Class I major histocompatibility complex antigen, named HLA-B*51, along with several other weaker associations with genes encoding proteins involved in inflammation. However, pathogenic mechanisms associated with these genetic variations and their interactions with the environment have not been elucidated yet. In this paper, we present a mathematical model for BD based on a dynamical systems perspective that captures especially the relapsing nature of the disease. We propose a disease progression mechanism and construct a model, in the form of coupled ordinary differential equations (ODEs), which reveals the occurrence pattern of the disease in the population. According to our model, the disease has three distinct modes describing different phenotypes of people carrying HLA-B*51 tissue antigen, namely, the Healthy Carrier, the Potential Patient and the Active Patient. We herein present an exemplary mathematical model for BD, for the first time in the literature, that concisely captures the actions of many cell types together with genetic and environmental effects. The proposed model provides insight into this complex inflammatory disease which may lead to identification of new tools for its treatment and prevention.
  • Placeholder
    Publication
    Pan-cancer clinical impact of latent drivers from double mutations
    (Nature Portfolio, 2023) Yavuz, Bengi Ruken; Tsai, Chung-Jung; Nussinov, Ruth; Department of Chemical and Biological Engineering; Tunçbağ, Nurcan; Faculty Member; Department of Chemical and Biological Engineering; College of Engineering; 245513
    Here, we discover potential 'latent driver' mutations in cancer genomes. Latent drivers have low frequencies and minor observable translational potential. As such, to date they have escaped identification. Their discovery is important, since when paired in cis, latent driver mutations can drive cancer. Our comprehensive statistical analysis of the pan-cancer mutation profiles of similar to 60,000 tumor sequences from the TCGA and AACR-GENIE cohorts identifies significantly co-occurring potential latent drivers. We observe 155 same gene double mutations of which 140 individual components are cataloged as latent drivers. Evaluation of cell lines and patient-derived xenograft response data to drug treatment indicate that in certain genes double mutations may have a prominent role in increasing oncogenic activity, hence obtaining a better drug response, as in PIK3CA. Taken together, our comprehensive analyses indicate that same-gene double mutations are exceedingly rare phenomena but are a signature for some cancer types, e.g., breast, and lung cancers. The relative rarity of doublets can be explained by the likelihood of strong signals resulting in oncogene-induced senescence, and by doublets consisting of non-identical single residue components populating the background mutational load, thus not identified.
  • Placeholder
    Publication
    Reaction path analysis for demethylation process of histone tail lysine residues
    (IEEE, 2010) N/A; Department of Chemical and Biological Engineering; Department of Chemical and Biological Engineering; N/A; Keskin, Özlem; Erman, Burak; Karasulu, Bora; Faculty Member; Faculty Member; Master Student; Department of Chemical and Biological Engineering; College of Engineering; College of Engineering; Graduate School of Sciences and Engineering; 26605; 179997; N/A
    Histone proteins control many crucial cell regulatory processes post-translational modifications. Among these modifications, methylation is recently shown to be reversible with the discovery of Lysine-specific Demethylase (LSD1) enzyme. As many studies have showed the relation of some cancer-type and other diseases with the abnormalities in the balance of methylation/demethylation, drug molecule design based on the information gained from reaction path analysis becomes very useful. In this paper, a chemically-consistent reaction mechanism is proposed for the demethylation of histone tail lysine residues and the reaction path analysis of this mechanism is carried out. Potential and free energy profiles of the system, which does not include the residues of the enzyme, are calculated with semi-empirical and quantum mechanical (QM) methods. These results create a fundamental basis for further analysis of the demethylation process with enzyme and/or inhibitor molecules available in the literature.