Research Outputs
Permanent URI for this communityhttps://hdl.handle.net/20.500.14288/2
Browse
129 results
Search Results
Publication Open Access A 2D MEMS stage for optical applications(Society of Photo-optical Instrumentation Engineers (SPIE), 2006) Ataman, Çağlar; Petremand, Yves; Noell, Wilfried; Epitaux, Marc; de Rooij, Nico F.; Department of Electrical and Electronics Engineering; Ürey, Hakan; Faculty Member; Department of Electrical and Electronics Engineering; College of Engineering; 8579A 2D MEMS platform for a microlens scanner application is reported. The platform is fabricated on an SOI wafer with 50/μm thick device layer. Entire device is defined with a single etching step on the same layer. Through four S-shaped beams, the device is capable of producing nonlinear 2D motion from linear ID translation of two pairs of comb actuator sets. The device has a clear aperture of 2mm by 2mm, which is hallowed from the backside for micro-optics assembly. In this paper, a numerical device model and its validation via experimental characterization results are presented. Integration of the micro-optical components with the stage is also discussed. Additionally, a new driving scheme to minimize the settling time of the device in DC operation is explored.Publication Open Access A hybrid architecture for federated and centralized learning(Institute of Electrical and Electronics Engineers (IEEE), 2022) Elbir, Ahmet M.; Papazafeiropoulos, Anastasios K.; Kourtessis, Pandelis; Chatzinotas, Symeon; Department of Electrical and Electronics Engineering; Ergen, Sinem Çöleri; Faculty Member; Department of Electrical and Electronics Engineering; College of Engineering; 7211Many of the machine learning tasks rely on centralized learning (CL), which requires the transmission of local datasets from the clients to a parameter server (PS) entailing huge communication overhead. To overcome this, federated learning (FL) has been suggested as a promising tool, wherein the clients send only the model updates to the PS instead of the whole dataset. However, FL demands powerful computational resources from the clients. In practice, not all the clients have sufficient computational resources to participate in training. To address this common scenario, we propose a more efficient approach called hybrid federated and centralized learning (HFCL), wherein only the clients with sufficient resources employ FL, while the remaining ones send their datasets to the PS, which computes the model on behalf of them. Then, the model parameters are aggregated at the PS. To improve the efficiency of dataset transmission, we propose two different techniques: i) increased computation-per-client and ii) sequential data transmission. Notably, the HFCL frameworks outperform FL with up to 20% improvement in the learning accuracy when only half of the clients perform FL while having 50% less communication overhead than CL since all the clients collaborate on the learning process with their datasets.Publication Open Access A new RIS architecture with a single power amplifier: energy efficiency and error performance analysis(Institute of Electrical and Electronics Engineers (IEEE), 2022) Alexandropoulos, George C.; Department of Electrical and Electronics Engineering; Başar, Ertuğrul; Taşçı, Recep Akif; Kılınç, Fatih; Faculty Member; Master Student; Researcher; Department of Electrical and Electronics Engineering; Graduate School of Sciences and Engineering; College of Engineering; 149116; N/A; N/AMany electrochemical devices are based on the fundamental process of ion migration and accumulation on surfaces. Complex interplay of molecular properties of ions and device dimensions control the entire process and define the overall dynamics of the system. Particularly, for ionic liquid-based electrolytes it is often not clear which property, and to what extent, contributes to the overall performance of the device. Herein we use X-ray photoelectron spectroscopy (XPS) while the device is under electrical bias. Such a procedure reveals localized electrical potential developments, through binding energy shifts of the atomic core levels, in a chemically specific fashion. Combining it with square-wave AC modulation, the information can also be extended to time domain, and we investigate devices configured as a coplanar capacitor, with an ionic liquid as the electrolyte, in macro-dimensions. Our analysis reveals that a nonlinear voltage profile across the device emerges from spatially non-uniform electrical double layer formation on electrode surfaces. Interestingly the coplanar capacitor has an extremely slow time response which is particularly controlled by IL film thickness. XPS measurements can capture the ion dynamics in the tens of seconds to microseconds range, and reveal that ionic motion is all over the device, including on metallic electrode regions. This behavior can only be attributed to motion in more than one dimension. The ion dynamics can also be faithfully simulated by using a modified PNP equation, taking into account steric effects, and device dimensions. XPS measurements on two devices with different dimensions corroborated and validated the simulation results. The present results propose a new experimental approach and provide new insights into the dynamics of ions across electrochemical devices.Publication Open Access A queueing-theoretical delay analysis for intra-body nervous nanonetwork(Elsevier, 2015) Department of Electrical and Electronics Engineering; Abbasi, Naveed Ahmed; Akan, Özgür Barış; Faculty Member; Department of Electrical and Electronics Engineering; College of EngineeringNanonetworks is an emerging field of study where nanomachines communicate to work beyond their individual limited processing capabilities and perform complicated tasks. The human body is an example of a very large nanoscale communication network, where individual constituents communicate by means of molecular nanonetworks. Amongst the various intra-body networks, the nervous system forms the largest and the most complex network. In this paper, we introduce a queueing theory based delay analysis model for neuro-spike communication between two neurons. Using standard queueing model blocks such as servers, queues and fork-join networks, impulse reception and processing through the nervous system is modeled as arrival and service processes in queues. Simulations show that the response time characteristics of the model are comparable to those of the biological neurons.Publication Open Access A wearable paper-integrated microfluidic device for sequential analysis of sweat based on capillary action(Royal Society of Chemistry (RSC), 2022) Koydemir, Hatice Ceylan; Department of Mechanical Engineering; Department of Electrical and Electronics Engineering; Beker, Levent; Abbasiasl, Taher; Mirlou, Fariborz; İstif, Emin; Faculty Member; Department of Mechanical Engineering; Department of Electrical and Electronics Engineering; College of Engineering; Graduate School of Sciences and Engineering; 308798; N/A; N/A; N/ASoft, skin-mounted microfluidic devices can collect microliter volumes of eccrine sweat and are capable of in situ real-time analysis of different biomarkers to assess physiological state and health. Chrono-analysis of sweat can be implemented to monitor temporal variations of biomarker concentrations over a certain period of interest. Conventional methods used to capture sweat or some of the newly developed microfluidic platforms for sweat collection and analysis are based on absorbent pads. They suffer from evaporation, leading to considerable deviations in the concentration of the biomarkers. Here, a paperintegrated microfluidic device is presented for sequential analysis of sweat that is easy to fabricate and does not include air exits for each reservoir, which reduces undesirable effects of sweat evaporation. Furthermore, the high capillary force of filter paper is leveraged to route the liquid into the chambers in a sequential fashion and allow further chemical analysis. The employed design of the paper-embedded microfluidic device successfully samples and analyzes artificial sweat sequentially for flow rates up to 5 ?L min?1 without showing any leakage. We demonstrated the performance of the device, employing colorimetric assays for chrono-analysis of glucose standard solutions at concentrations in the range of 10– 100 mM and pH of sweat during exercise. The results reveal the presented approach's functionality and potential to analyze the concentration of biomarkers over a certain period sequentially.Publication Metadata only Adaptation strategies for MGS scalable video streaming(Elsevier, 2012) N/A; Department of Electrical and Electronics Engineering; Görkemli, Burak; Tekalp, Ahmet Murat; N/A; Faculty Member; Department of Electrical and Electronics Engineering; College of Engineering; College of Engineering; N/A; 26207An adaptive streaming framework consists of a video codec that can produce video encoded at a variety of rates, a transport protocol that supports an effective rate/congestion control mechanism, and an adaptation strategy in order to match the video source rate to the available network throughput. The main parameters of the adaptation strategy are encoder configuration, video extraction method, determination of video extraction rate, send rate control, retransmission of lost packets, decoder buffer status, and packetization method. This paper proposes optimal adaptation strategies, in terms of received video quality and used network resources, at the codec and network levels using a medium grain scalable (MGS) video codec and two transport protocols with built-in congestion control, TCP and DCCP. Key recommendations are presented to obtain the best results in adaptive video streaming using TCP or DCCP based on extensive experimental results over the Internet. (c) 2012 Elsevier B.V. All rights reserved.Publication Open Access Advanced materials and device architectures for magnetooptical spatial light modulators(Wiley-VCH, 2019) N/A; Department of Electrical and Electronics Engineering; Kharratian, Soheila; Onbaşlı, Mehmet Cengiz; Ürey, Hakan; Faculty Member; Faculty Member; Department of Electrical and Electronics Engineering; Graduate School of Sciences and Engineering; N/A; 258783; 8579Faraday and Kerr rotations are magnetooptical (MO) effects used for rotating the polarization of light in transmission and reflection from a magnetized medium, respectively. MO effects combined with intrinsically fast magnetization reversal, which can go down to a few tens of femtoseconds or less, can be applied in magnetooptical spatial light modulators (MOSLMs) promising for nonvolatile, ultrafast, and high-resolution spatial modulation of light. With the recent progress in low-power switching of magnetic and MO materials, MOSLMs may lead to major breakthroughs and benefit beyond state-of-the-art holography, data storage, optical communications, heads-up displays, virtual and augmented reality devices, and solid-state light detection and ranging (LIDAR). In this study, the recent developments in the growth, processing, and engineering of advanced materials with high MO figures of merit for practical MOSLM devices are reviewed. The challenges with MOSLM functionalities including the intrinsic weakness of MO effect and large power requirement for switching are assessed. The suggested solutions are evaluated, different driving systems are investigated, and resulting device architectures are benchmarked. Finally, the research opportunities on MOSLMs for achieving integrated, high-contrast, and low-power devices are presented.Publication Open Access All optical control of magnetization in quantum confined ultrathin magnetic metals(Nature Publishing Group (NPG), 2021) Department of Physics; Department of Electrical and Electronics Engineering; N/A; Müstecaplıoğlu, Özgür Esat; Onbaşlı, Mehmet Cengiz; Naseem, Muhammad Tahir; Zanjani, Saeedeh Mokarian; Faculty Member; Faculty Member; Department of Physics; Department of Electrical and Electronics Engineering; College of Sciences; College of Engineering; Graduate School of Sciences and Engineering; 1674; 258783; N/A; N/AAll-optical control dynamics of magnetization in sub-10 nm metallic thin films are investigated, as these films with quantum confinement undergo unique interactions with femtosecond laser pulses. Our theoretical analysis based on the free electron model shows that the density of states at Fermi level (DOSF) and electron-phonon coupling coefficients (G(ep)) in ultrathin metals have very high sensitivity to film thickness within a few angstroms. We show that completely different magnetization dynamics characteristics emerge if DOSF and G(ep) depend on thickness compared with bulk metals. Our model suggests highly efficient energy transfer from femtosecond laser photons to spin waves due to minimal energy absorption by phonons. This sensitivity to the thickness and efficient energy transfer offers an opportunity to obtain ultrafast on-chip magnetization dynamics.Publication Open Access An information theoretical analysis of human insulin-glucose system toward the internet of bio-nano things(Institute of Electrical and Electronics Engineers (IEEE), 2017) Department of Electrical and Electronics Engineering; Abbasi, Naveed Ahmed; Akan, Özgür Barış; Faculty Member; Department of Electrical and Electronics Engineering; Graduate School of Sciences and EngineeringMolecular communication is an important tool to understand biological communications with many promising applications in Internet of Bio-Nano Things (IoBNT). The insulin-glucose system is of key significance among the major intra-body nanonetworks, since it fulfills metabolic requirements of the body. The study of biological networks from information and communication theoretical (ICT) perspective is necessary for their introduction in the IoBNT framework. Therefore, the objective of this paper is to provide and analyze for the first time in the literature, a simple molecular communication model of the human insulin-glucose system from ICT perspective. The data rate, channel capacity, and the group propagation delay are analyzed for a two-cell network between a pancreatic beta cell and a muscle cell that are connected through a capillary. The results point out a correlation between an increase in insulin resistance and a decrease in the data rate and channel capacity, an increase in the insulin transmission rate, and an increase in the propagation delay. We also propose applications for the introduction of the system in the IoBNT framework. Multi-cell insulin glucose system models may be based on this simple model to help in the investigation, diagnosis, and treatment of insulin resistance by means of novel IoBNT applications.Publication Open Access An information theoretical analysis of multi-terminal neuro-spike communication network in spinal cord(Association for Computing Machinery (ACM), 2018) Department of Electrical and Electronics Engineering; Akan, Özgür Barış; Civaş, Meltem; Faculty Member; Department of Electrical and Electronics Engineering; College of Engineering; Graduate School of Sciences and Engineering; 6647; N/ACommunication theoretical understanding of healthy and diseased connections in the spinal cord motor system is crucial for realizing future information and communication technology (ICT) based diagnosis and treatment techniques for spinal cord injuries (SCI). A spinal cord motor nucleus associated with a particular muscle constitutes an ideal candidate for studying to have an understanding of SCI. Typical spinal cord motor nucleus system contains pool of lower motor neurons (MNs) controlling a muscle by integrating synaptic inputs from spinal interneurons (INs), upper motor neurons (DNs) and sensory neurons (SNs). In this study, we consider this system from ICT perspective. Our aim is to quantify the rate of information flow across a spinal cord motor nucleus. To this end, we model an equivalent single-hop multiterminal network, where multiple transmitting nodes representing heterogeneous population of DNs, INs and SNs sen information to multiple receiving nodes corresponding to MNs. To identify the outputs at receiving nodes, we define corresponding neurospike communication channel and then find the bound on total rates across this network. Based on the network model, we analyze achievable rates for a particular motor nucleus system called Tibialis Anterior (TA) motor nucleus in the spinal cord numerically and simulate several spinal cord dysfunction scenarios. The numerical results reveal that decrease in the maximum total rates with the lower motor neuron injury causes weakness in the affected muscle.