Research Outputs

Permanent URI for this communityhttps://hdl.handle.net/20.500.14288/2

Browse

Search Results

Now showing 1 - 10 of 35
  • Placeholder
    Publication
    3D coffee stains
    (Royal Soc Chemistry, 2017) N/A; N/A; Department of Electrical and Electronics Engineering; N/A; N/A; N/A; Department of Molecular Biology and Genetics; Department of Chemistry; Department of Chemistry; Department of Electrical and Electronics Engineering; Department of Molecular Biology and Genetics; Department of Chemistry; Department of Electrical and Electronics Engineering; Doğru-Yüksel, Itır Bakış; Söz, Çağla Koşak; Press, Daniel Aaron; Melikov, Rustamzhon; Begar, Efe; Çonkar, Deniz; Karalar, Elif Nur Fırat; Yılgör, Emel; Yılgör, İskender; Nizamoğlu, Sedat; PhD Student; PhD Student; Researcher; PhD Student; PhD Student; PhD Student; PhD Student; Faculty Member; Researcher; Faculty Member; Faculty Member; N/A; Koç University Surface Science and Technology Center (KUYTAM) / Koç Üniversitesi Yüzey Teknolojileri Araştırmaları Merkezi (KUYTAM); N/A; N/A; N/A; N/A; N/A; N/A; Koç University Surface Science and Technology Center (KUYTAM) / Koç Üniversitesi Yüzey Teknolojileri Araştırmaları Merkezi (KUYTAM); Koç University Surface Science and Technology Center (KUYTAM) / Koç Üniversitesi Yüzey Teknolojileri Araştırmaları Merkezi (KUYTAM); Koç University Surface Science and Technology Center (KUYTAM) / Koç Üniversitesi Yüzey Teknolojileri Araştırmaları Merkezi (KUYTAM); Graduate School of Sciences and Engineering; Graduate School of Sciences and Engineering; College of Engineering; Graduate School of Sciences and Engineering; Graduate School of Sciences and Engineering; Graduate School of Sciences and Engineering; College of Sciences; College of Sciences; College of Sciences; College of Engineering; N/A; N/A; N/A; N/A; N/A; N/A; 206349; N/A; 24181; 130295
    When a liquid droplet (e.g., coffee, wine, etc.) is splattered on a surface, the droplet dries in a ring-shaped stain. This widely observed pattern in everyday life occurs due to the phenomenon known as a coffee stain (or coffee ring) effect. While the droplet dries, the capillary flow moves and deposits the particles toward the pinned edges, which shows a 2D ring-like structure. Here we demonstrate the transition from a 2D to a 3D coffee stain that has a well-defined and hollow sphere-like structure, when the substrate surface is switched from hydrophilic to superhydrophobic. The 3D stain formation starts with the evaporation of the pinned aqueous colloidal droplet placed on a superhydrophobic surface that facilitates the particle flow towards the liquid-air interface. This leads to spherical skin formation and a cavity in the droplet. Afterwards the water loss in the cavity due to pervaporation leads to bubble nucleation and growth, until complete evaporation of the solvent. In addition to the superhydrophobicity of the surface, the concentration of the solution also has a significant effect on 3D coffee stain formation. Advantageously, 3D coffee stain formation in a pendant droplet configuration enables the construction of all-protein lasers by integrating silk fibroin with fluorescent proteins. No tools, components and/or human intervention are needed after the construction process is initiated; therefore, 3D coffee-stains hold promise for building self-assembled and functional 3D constructs and devices from colloidal solutions.
  • Thumbnail Image
    PublicationOpen Access
    An easy-to-fabricate microfluidic shallow trench induced three-dimensional cell culturing and imaging (STICI3D) platform
    (American Chemical Society (ACS), 2022) Coşkun, Umut Can; Rehman, Ateeq Ur; Gülle, Merve; Erten, Ahmet; N/A; Department of Physics; Department of Electrical and Electronics Engineering; N/A; Department of Physics; Department of Electrical and Electronics Engineering; Başer, Hatice Nur; Baysal, Kemal; Kiraz, Alper; Kul, Demet; Kuş, Funda; Morova, Berna; Faculty Member; Faculty Member; Researcher; Koç University Research Center for Translational Medicine (KUTTAM) / Koç Üniversitesi Translasyonel Tıp Araştırma Merkezi (KUTTAM); Graduate School of Sciences and Engineering; School of Medicine; College of Sciences; College of Engineering; N/A; 119184; 22542; N/A; N/A; N/A
    Compared to the established monolayer approach of two-dimensional cell cultures, three-dimensional (3D) cultures more closely resemble in vivo models; that is, the cells interact and form clusters mimicking their organization in native tissue. Therefore, the cellular microenvironment of these 3D cultures proves to be more clinically relevant. In this study, we present a novel easy-to-fabricate microfluidic shallow trench induced 3D cell culturing and imaging (STICI3D) platform, suitable for rapid fabrication as well as mass manufacturing. Our design consists of a shallow trench, within which various hydrogels can be formed in situ via capillary action, between and fully in contact with two side channels that allow cell seeding and media replenishment, as well as forming concentration gradients of various molecules. Compared to a micropillar-based burst valve design, which requires sophisticated microfabrication facilities, our capillary-based STICI3D can be fabricated using molds prepared with simple adhesive tapes and razors alone. The simple design supports the easy applicability of mass-production methods such as hot embossing and injection molding as well. To optimize the STICI3D design, we investigated the effect of individual design parameters such as corner radii, trench height, and surface wettability under various inlet pressures on the confinement of a hydrogel solution within the shallow trench using Computational Fluid Dynamics simulations supported with experimental validation. We identified ideal design values that improved the robustness of hydrogel confinement and reduced the effect of end-user dependent factors such as hydrogel solution loading pressure. Finally, we demonstrated cultures of human mesenchymal stem cells and human umbilical cord endothelial cells in the STICI3D to show that it supports 3D cell cultures and enables precise control of cellular microenvironment and real-time microscopic imaging. The easy-to-fabricate and highly adaptable nature of the STICI3D platform makes it suitable for researchers interested in fabricating custom polydimethylsiloxane devices as well as those who are in need of ready-to-use plastic platforms. As such, STICI3Ds can be used in imaging cell-cell interactions, angiogenesis, semiquantitative analysis of drug response in cells, and measurement of transport through cell sheet barriers.
  • Thumbnail Image
    PublicationOpen Access
    Biocompatible quantum funnels for neural photostimulation
    (American Chemical Society (ACS), 2019) N/A; Department of Chemical and Biological Engineering; N/A; Department of Electrical and Electronics Engineering; Department of Molecular Biology and Genetics; N/A; Department of Chemical and Biological Engineering; Department of Electrical and Electronics Engineering; Department of Molecular Biology and Genetics; Jalali, Houman Bahmani; Doğru-Yüksel, Itır Bakış; Eren, Güncem Özgün; Nizamoğlu, Sedat; Karatüm, Onuralp; Melikov, Rustamzhon; Dikbaş, Uğur Meriç; Kavaklı, İbrahim Halil; Sadeghi, Sadra; Yıldız, Erdost; Ergün, Çağla; Şahin, Afsun; PhD Student; Faculty Member; PhD Student; Master Student; Faculty Member; PhD Student; PhD Student; Faculty Member; Koç University Research Center for Translational Medicine (KUTTAM) / Koç Üniversitesi Translasyonel Tıp Araştırma Merkezi (KUTTAM); Graduate School of Sciences and Engineering; College of Engineering; College of Sciences; School of Medicine; N/A; N/A; N/A; 130295; N/A; N/A; N/A; 40319; N/A; N/A; N/A; 171267
    Neural photostimulation has high potential to understand the working principles of complex neural networks and develop novel therapeutic methods for neurological disorders. A key issue in the light-induced cell stimulation is the efficient conversion of light to bioelectrical stimuli. In photosynthetic systems developed in millions of years by nature, the absorbed energy by the photoabsorbers is transported via nonradiative energy transfer to the reaction centers. Inspired by these systems, neural interfaces based on biocompatible quantum funnels are developed that direct the photogenerated charge carriers toward the bionanojunction for effective photostimulation. Funnels are constructed with indium-based rainbow quantum dots that are assembled in a graded energy profile. Implementation of a quantum funnel enhances the generated photoelectrochemical current 215% per unit absorbance in comparison with ungraded energy profile in a wireless and free-standing mode and facilitates optical neuromodulation of a single cell. This study indicates that the control of charge transport at nanoscale can lead to unconventional and effective neural interfaces.
  • Placeholder
    Publication
    Colloidal aluminum antimonide quantum dots
    (Amer Chemical Soc, 2019) Sahin, Mehmet; Öztürk, Hande; Ow-Yang, Cleva W.; N/A; N/A; Department of Electrical and Electronics Engineering; Department of Electrical and Electronics Engineering; Jalali, Houman Bahmani; Sadeghi, Sadra; Nizamoğlu, Sedat; PhD Student; PhD Student; PhD Student; Faculty Member; Graduate School of Sciences and Engineering; Graduate School of Sciences and Engineering; College of Engineering; N/A; N/A; 130295
    AlSb is a less studied member of the III-V semiconductor family, and herein, we report the colloidal synthesis of AlSb quantum dots (QDs) for the first time. Different sizes of colloidal AlSb QDs (5 to 9 nm) were produced by the controlled reaction of AlCl3 and Sb[N(Si(Me)(3))(2)](3) in the presence of superhydride. These colloidal AlSb quantum dots showed excitonic transitions in the UV-A region and a tunable band edge emission (quantum yield of up to 18%) in the blue spectral range. Among all III-V quantum dots, these quantum dots show the brightest core emission in the blue spectral region.
  • Thumbnail Image
    PublicationOpen Access
    Design and adoption of low-cost point-of-care diagnostic devices: Syrian case
    (Multidisciplinary Digital Publishing Institute (MDPI), 2021) Alseed, M. Munzer; Yetişen, Ali K.; Department of Mechanical Engineering; Department of Electrical and Electronics Engineering; Department of Mechanical Engineering; Department of Electrical and Electronics Engineering; Syed, Hamzah; Taşoğlu, Savaş; Onbaşlı, Mehmet Cengiz; Faculty Member; Faculty Member; Faculty Member; Koç University Research Center for Translational Medicine (KUTTAM) / Koç Üniversitesi Translasyonel Tıp Araştırma Merkezi (KUTTAM); KU Arçelik Research Center for Creative Industries (KUAR) / KU Arçelik Yaratıcı Endüstriler Uygulama ve Araştırma Merkezi (KUAR); School of Medicine; College of Engineering; 318138; 291971; 258783
    Civil wars produce immense humanitarian crises, causing millions of individuals to seek refuge in other countries. The rate of disease prevalence has inclined among the refugees, increasing the cost of healthcare. Complex medical conditions and high numbers of patients at healthcare centers overwhelm the healthcare system and delay diagnosis and treatment. Point-of-care (PoC) testing can provide efficient solutions to high equipment cost, late diagnosis, and low accessibility of healthcare services. However, the development of PoC devices in developing countries is challenged by several barriers. Such PoC devices may not be adopted due to prejudices about new technologies and the need for special training to use some of these devices. Here, we investigated the concerns of end users regarding PoC devices by surveying healthcare workers and doctors. The tendency to adopt PoC device changes is based on demographic factors such as work sector, education, and technology experience. The most apparent concern about PoC devices was issues regarding low accuracy, according to the surveyed clinicians.
  • Placeholder
    Publication
    Effect of polymer topology on microstructure, segmental dynamics, and ionic conductivity in PEO/PMMA-based solid polymer electrolytes
    (American Chemical Society (ACS), 2022) Bakar, Recep; Li, Tianyu; Hong, Kunlun; Department of Chemistry; Department of Electrical and Electronics Engineering; N/A; Department of Chemical and Biological Engineering; N/A; N/A; Department of Chemistry; Department of Electrical and Electronics Engineering; Department of Chemical and Biological Engineering; Aydemir, Umut; Nizamoğlu, Sedat; Han, Mertcan; Şenses, Erkan; Darvishi, Saeid; Bakar, Recep; Faculty Member; Faculty Member; Master Student; Faculty Member; PhD Student; PhD Student; College of Sciences; College of Engineering; Graduate School of Sciences and Engineering; College of Engineering; Graduate School of Sciences and Engineering; Graduate School of Sciences and Engineering; 58403; 130295; N/A; 280298; N/A; N/A
    Poly(ethylene oxide) (PEO)-based solid polymer electrolytes (SPEs) have attracted much interest due to their high ionic conductivity resulting from inherently fast segmental dynamics and high salt solubility, yet they lack mechanical stability in their neat form. Blending PEO with another rigid, or high glass transition temperature, polymer is a versatile way to improve the mechanical stability; however, the ionic conductivity is strongly reduced due to slower segmental dynamics of highly interpenetrating linear polymer chains. In this work, we used model PEO/PMMA blend systems prepared with various well-defined PEO architectures (linear, stars, hyperbranched, and bottlebrushes) doped with lithium bis(trifluoromethane-sulfonyl)-imide (LiTFSI) and investigated, for the first time, the role of macromolecular architecture of PEO on crystallization, segmental dynamics, and ionic conductivity in the blends and electrolytes. The results suggest that room-temperature miscibility of these polymers can be dramatically extended by using nonlinear PEO in the blends instead of linear chains, which crystallize above 35 wt %. The broadband dielectric spectroscopy results revealed enhanced decoupling of PMMA and PEO segmental dynamics in compact branched architectures, which helps to achieve faster segmental motion of star PEO in glassy PMMA. This manifests as nearly three-fold higher ionic conductivity in these nonlinear blends compared to the conventional linear PEO/PMMA system. Regardless of the PEO architectures, the temperature dependence of ionic conductivity blends with PMMA and LiTFSI is well defined using the Vogel-Fulcher-Tammann mechanism, suggesting that ion transport is mainly affected by the segmental motion. The activation energy values decrease with the increasing ionic conductivity. Overall, our results show that macromolecular architecture can be a tool to decouple segmental dynamics and ion mobility to rationally design SPEs with improved performance.
  • Placeholder
    Publication
    Effective neural photostimulation using indium-based type-ii quantum dots
    (American Chemical Society (ACS), 2018) Şahin, Mehmet; Ow-Yang, Cleva W.; N/A; N/A; N/A; N/A; Department of Electrical and Electronics Engineering; Department of Chemical and Biological Engineering; Department of Electrical and Electronics Engineering; Department of Chemical and Biological Engineering; Department of Electrical and Electronics Engineering; Jalali, Houman Bahmani; Aria, Mohammad Mohammadi; Dikbaş, Uğur Meriç; Sadeghi, Sadra; Kumar, Baskaran Ganesh; Kavaklı, İbrahim Halil; Nizamoğlu, Sedat; PhD Student; PhD Student; Master Student; PhD Student; Other; Faculty Member; Faculty Member; Graduate School of Sciences and Engineering; Graduate School of Sciences and Engineering; Graduate School of Sciences and Engineering; Graduate School of Sciences and Engineering; College of Engineering; College of Engineering; College of Engineering; N/A; N/A; N/A; N/A; N/A; 40319; 130295
    Light-induced stimulation of neurons via photoactive surfaces offers rich opportunities for the development of therapeutic methods and high-resolution retinal prosthetic devices. Quantum dots serve as an attractive building block for such surfaces, as they can be easily functionalized to match the biocompatibility and charge transport requirements of cell stimulation. Although indium based colloidal quantum dots with type-I band alignment have attracted significant attention as a nontoxic alternative to cadmium-based ones, little attention has been paid to their photovoltaic potential as type-II heterostructures. Herein, we demonstrate type-II indium phosphide/zinc oxide core/shell quantum dots that are incorporated into a photoelectrode structure for neural photostimulation. This induces a hyperpolarizing bioelectrical current that triggers the firing of a single neural cell at 4 mu W mm(-2), 26-fold lower than the ocular safety limit for continuous exposure to visible light. These findings show that nanomaterials can induce a biocompatible and effective biological junction and can introduce a route in the use of quantum dots in photoelectrode architectures for artificial retinal prostheses.
  • Placeholder
    Publication
    Electrical conduction and NO 2 gas sensing properties of ZnO nanorods
    (Elsevier, 2014) Sahin, Yasin; Öztürk, Sadullah; Kosemen, Arif; Erkovan, Mustafa; Öztürk, Zafer Ziya; Department of Electrical and Electronics Engineering; Department of Electrical and Electronics Engineering; Kılınç, Necmettin; Researcher; College of Engineering; 59959
    Thermally stimulated current (TSC), photoresponse and gas sensing properties of zinc oxide (ZnO) nanorods were investigated depending on heating rates, illumination and dark aging times with using sandwich type electrode system. Vertically aligned ZnO nanorods were grown on indium tin oxide (ITO) coated glass substrate by hydrothermal process. TSC measurements were performed at different heating rates under constant potential. Photoresponse and gas sensing properties were investigated in dry air ambient at 200 degrees C. For gas sensing measurements, ZnO nanorods were exposed to NO2 (100 ppb to 1 ppm) in dark and illuminated conditions and the resulting resistance transient was recorded. It was found from dark electrical measurements that the dependence of the dc conductivity on temperature followed Mott's variable range hopping (VRH) model. In addition, response time and recovery times of ZnO nanorods to NO2 gas decreased by exposing to white light.
  • Thumbnail Image
    PublicationOpen Access
    Electrical stimulation of neurons with quantum dots via near-infrared light
    (American Chemical Society (ACS), 2022) Department of Electrical and Electronics Engineering; N/A; Department of Electrical and Electronics Engineering; Karatüm, Onuralp; Kaleli, Humeyra Nur; Eren, Güncem Özgün; Şahin, Afsun; Nizamoğlu, Sedat; Faculty Member; Faculty Member; Koç University Research Center for Translational Medicine (KUTTAM) / Koç Üniversitesi Translasyonel Tıp Araştırma Merkezi (KUTTAM); Graduate School of Sciences and Engineering; Graduate School of Health Sciences; School of Medicine; College of Engineering; N/A; N/A; N/A; 171267; 130295
    Photovoltaic biointerfaces offer wireless and battery-free bioelectronic medicine via photomodulation of neurons. Near-infrared (NIR) light enables communication with neurons inside the deep tissue and application of high photon flux within the ocular safety limit of light exposure. For that, nonsilicon biointerfaces are highly demanded for thin and flexible operation. Here, we devised a flexible quantum dot (QD)-based photovoltaic biointerface that stimulates cells within the spectral tissue transparency window by using MR light (lambda = 780 nm). Integration of an ultrathin QD layer of 25 nm into a multilayered photovoltaic architecture enables transduction of NIR light to safe capacitive ionic currents that leads to reproducible action potentials on primary hippocampal neurons with high success rates. The biointerfaces exhibit low in vitro toxicity and robust photoelectrical performance under different stability tests. Our findings show that colloidal quantum dots can be used in wireless bioelectronic medicine for brain, heart, and retina.
  • Thumbnail Image
    PublicationOpen Access
    Emergence of near-infrared photoluminescence via ZnS shell growth on the AgBiS2 nanocrystals
    (American Chemical Society, 2024) Department of Chemistry; Department of Electrical and Electronics Engineering; Önal, Asım; Kaya, Tarık Safa; Metin, Önder; Nizamoğlu, Sedat; Graduate School of Sciences and Engineering; College of Sciences; College of Engineering
    AgBiS2 nanocrystals (NCs), composed of nontoxic, earth-abundant materials and exhibiting an exceptionally high absorption coefficient from visible to near-infrared (>105 cm(-1)), hold promise for photovoltaics but have lack of photoluminescence (PL) due to intrinsic nonradiative recombination and challenging shell growth. In this study, we reported a facile wet-chemical approach for the epitaxial growth of ZnS shell on AgBiS2 NCs, which triggered the observation of PL emission in the near-infrared (764 nm). Since high quality of the core is critical for epitaxial shell growth, we first obtained rock-salt structured AgBiS2 NCs with high crystallinity, nearly spherical shape and monodisperse size distribution (<6%) via a dual-ligand approach reacting Ag-Bi oleate with elemental sulfur in oleylamine. Next, a zincblende ZnS shell with a low-lattice mismatch of 4.9% was grown on as-prepared AgBiS2 NCs via a highly reactive zinc (Zn(acac)(2)) precursor that led to a higher photoluminescence quantum yield (PLQY) of 15.3%, in comparison with a relatively low reactivity precursor (Zn(ac)(2)) resulting in reduced PLQY. The emission from AgBiS2 NCs with ultrastrong absorption, facilitated by shell growth, can open up new possibilities in lighting, display, and bioimaging.