Research Outputs
Permanent URI for this communityhttps://hdl.handle.net/20.500.14288/2
Browse
63 results
Filters
Advanced Search
Filter by
Settings
Search Results
Publication Open Access A comparative study on GaSb epilayers grown on nominal and vicinal Si(100) substrates by molecular beam epitaxy(Institute of Physics (IOP) Publishing, 2020) Arpapay, Burcu; Suyolcu, Y. Eren; van Aken, Peter A.; Gülgün, Mehmet Ali; Serincan, Uğur; Çorapçıoğlu, Gülcan; n2STAR-Koç University Nanofabrication and Nanocharacterization Center for Scientifc and Technological Advanced ResearchThe direct growth of GaSb buffer layers on Si substrates is attracting considerable interest in the integration of group III-Sb based device structures on lower-cost Si substrates. Here, we present the effect of various growth steps on the defect types and defect density that are crucial for advancing high crystal quality GaSb buffer layer on nominal/vicinal Si substrate. As a growth step, the applied thermal annealing at an intermediate step provided a decrease in the threading dislocation (TD) density down to 1.72 x 10(8) cm(-2), indicating a more effective method compared to post-growth annealing. Additionally, the importance of period number and position of GaSb/AlSb superlattice layers inserted in GaSb epilayers is demonstrated. In the case of the GaSb epilayers grown on vicinal substrates, the APB density as low as 0.06 mu m(-1) and TD density of 1.98 x 10(8) cm(-2) were obtained for the sample grown on 4 degrees miscut Si(100) substrate.Publication Metadata only A deformation-based approach to tuning of magnetic micromechanical resonators(2018) Yalçınkaya, Arda D.; Department of Mechanical Engineering; N/A; Department of Mechanical Engineering; Department of Mechanical Engineering; Biçer, Mahmut; Esfahani, Mohammad Nasr; Alaca, Burhanettin Erdem; Researcher; PhD Student; Faculty Member; Koç University Surface Science and Technology Center (KUYTAM) / Koç Üniversitesi Yüzey Teknolojileri Araştırmaları Merkezi (KUYTAM); College of Engineering; Graduate School of Sciences and Engineering; College of Engineering; N/A; N/A; 115108Resonance frequency tuning in magnetic micromechanical resonators remains a primary field of study for frequency reference applications. The use of magnetic micromechanical resonators for innovative timing, oscillator and sensing applications necessitates a platform for the precise control of the resonance frequency. The present work addresses a deformation based technique for tuning the resonance frequency of nickel micromechanical resonators. Frequency response is measured through magnetic actuation and optical readout. The tuning approach is based on a combination of flexural deformation and uniaxial strain. The bending deformation is achieved by using a DC current through the microbeam. This magnetomotive mechanism reduces the resonance frequency by about 13% for a maximum DC current of 80 mA. A substrate bending method is used for applying uniaxial strain to increase the resonance frequency by about 8%. A bidirectional frequency modulation is thus demonstrated by utilizing both deformation techniques. The interpretation of results is carried out by finite element analysis and electromechanical analogy in an equivalent circuit. Using deformation techniques, this study provides a rigorous approach to control the resonance frequency of magnetic micromechanical resonators.Publication Metadata only A differential integrability condition for two-dimensional Hamiltonian systems(Czech Technical Univ Prague, 2014) N/A; Department of Mathematics; Department of Mathematics; Mostafazadeh, Ali; Faculty Member; College of Sciences; 4231We review, restate, and prove a result due to Kaushal and Korsch [Phys. Lett. A 276, 47 (2000)] on the complete integrability of two-dimensional Hamiltonian systems whose Hamiltonian satisfies a set of four linear second order partial differential equations. In particular, we show that a two- dimensional Hamiltonian system is completely integrable, if the Hamiltonian has the form H = T + V where V and T are respectively harmonic functions of the generalized coordinates and the associated momenta.Publication Metadata only A dynamic model of an overhung rotor with ball bearings(Sage, 2011) Şanlıtürk, K. Y.; N/A; Çakmak, Onur; PhD Student; Graduate School of Sciences and Engineering; N/AA ball bearing comprising rolling elements, inner and outer rings, and a cage structure can be described as a multi-body system (MBS). In order to predict the dynamic behaviour and resonance characteristics of a rotor-ball bearing system, it can be modelled and analysed as a MBS with flexible and rigid parts. In this study, a ball bearing is modelled with MBS approach using MSC ADAMS commercial software. The Hertzian theory is used for modelling the contact dynamics between the balls and the rings. The ball bearing model is then assembled with the rotor model which comprised a shaft and a disc positioned at the free end of the shaft. The ball bearing model is used with both flexible and rigid shaft assumptions in order to highlight the differences between the two cases. For the flexible shaft case, the MBS model also included a finite element model of the shaft. As expected, it is necessary to include the flexibility of the shaft in the model in order to to predict the changes in the modal characteristics of the system as a function of the rotor speed. Furthermore, including the gyroscopic effects leads to observe the forward and backward travelling modes with different natural frequencies. The effects of the bearing diametral clearance and localized defects on the inner and outer rings are modelled and analysed using the model developed. Also, the effects of the rotor unbalance on the vibration level of the whole system are examined. A test rig - consisting of two ball bearings, a shaft, and a disc - is also designed and developed so as to validate the theoretical model using experimental data. Order tracking and modal analyses are carried out and Campbell diagrams are obtained. Finally, the theoretical and the experimental results are compared and a refined MBS model is obtained for further analyses.Publication Metadata only A Fourier transform spectrometer using resonant vertical comb actuators(Institute of Physics (IOP) Publishing, 2006) Wolter, Alexander; N/A; Department of Electrical and Electronics Engineering; Department of Electrical and Electronics Engineering; Ataman, Çağlar; Ürey, Hakan; PhD Student; Faculty Member; Graduate School of Sciences and Engineering; College of Engineering; N/A; 8579The design, fabrication and characterization of a novel out-of-plane vertical comb-drive actuator based lamellar grating interferometer (LGI) is reported. The interferometer utilizes resonant mode vertical comb actuators, where comb fingers are simultaneously used for actuation and as a movable diffraction grating, making the device very compact. The Fourier transform of the zeroth order intensity pattern as a function of the optical path difference gives the spectrum of light. The main advantages offered by the proposed device are a long travel range (i.e. good spectral resolution), a large clear aperture (i.e. high light efficiency), and a very simple, robust and compact spectrometer structure. Peak-to-peak 106 mu m out-of-plane deflection is observed in ambient pressure and at 28 V, corresponding to a theoretical spectral resolution of about 0.4 nm in the visible band and 3.6 nm at 1.5 mu m. A simple CMOS compatible process based on bulk micromachining of a silicon-on-insulator wafer is used for the device fabrication.Publication Metadata only A novel approach for monitoring plastic flow localization during in-situ sem testing of small-scale samples(Springer, 2018) Niendorf, Thomas; Weidner, Anja; N/A; Department of Mechanical Engineering; Department of Mechanical Engineering; Mirzajanzadeh, Morad; Canadinç, Demircan; PhD Student; Faculty Member; Koç University Surface Science and Technology Center (KUYTAM) / Koç Üniversitesi Yüzey Teknolojileri Araştırmaları Merkezi (KUYTAM); Graduate School of Sciences and Engineering; College of Engineering; N/A; 23433A novel method is proposed for monitoring the plastic flow localization during in-situ scanning electron microscopy (SEM) testing of small-scale AISI 316 L stainless steel. Stress-strain behavior of the material was obtained using a hybrid numerical-experimental (HNE) approach. By repeatedly illustrating each pair of sequentially taken SEM surface images throughout the deformation history in alternating order in form of a video, location of the material points which are not moving during the deformation can be detected. At the initial stages of deformation these points are located on the geometrical symmetry line of the test sample, however; when uniform straining limit of the material is reached, the locations of the stationary material points reveal the plastic localization regions. The current results clearly prove the feasibility of the presented method in monitoring primary plastic localization events through in-situ SEM tensile testing.Publication Metadata only A novel orthogonal frequency division multiplexing with index modulation waveform with carrier frequency offset resistance and low peak-to-average power ratio(Wiley, 2022) Kucukyavuz, Defne; Onat, Furuzan Atay; N/A; Department of Electrical and Electronics Engineering; Department of Electrical and Electronics Engineering; Gürol, İlter Erol; Başar, Ertuğrul; PhD Student; Faculty Member; Graduate School of Sciences and Engineering; College of Engineering; N/A; 149116In this paper, we propose a novel orthogonal frequency division multiplexing (OFDM) scheme with high carrier frequency offset (CFO) resistance and low peak-to-average power ratio (PAPR). In this scheme, we consider a hybrid model with two subblock types, namely, pilot subblocks and standard subblocks. In pilot subblocks, active subcarriers are utilized for PAPR reduction while inactive carriers generated by the index modulation (IM) are utilized for the coarse CFO estimation. For standard subblocks, we consider unique subcarrier activation patterns (SAPs) with high-diversity IM to enhance the bit error performance of the overall system. Additionally, the inactive data tones in standard subblocks are utilized for fine CFO estimation, which enhances the CFO estimation quite significantly. Furthermore, in this paper, we show that proposed hybrid OFDM-IM (H-OFDM-IM) scheme can outperform conventional OFDM-IM and classical OFDM both in CFO estimation and PAPR reduction without requiring transmission of any side information. Finally, we show both mathematically and through computer simulations that proposed H-OFDM-IM can achieve a satisfactory bit error rate (BER) performance under high CFO scenarios.Item Metadata only Acausal modelling of advanced-stage heart failure and the Istanbul heart ventricular assist device support with patient data(Springer, 2023) 0000-0002-8316-9623; 0000-0001-5969-3823; 0000-0001-9034-9350; Kucukaksu, Deniz Sueha; Department of Mechanical Engineering; N/A; N/A; Lazoğlu, İsmail; Mehmood, Khunsha; Arshad, Munam; Faculty Member; PhD Student; Researcher; College of Engineering; Graduate School of Sciences and Engineering; Graduate School of Sciences and Engineering; 179391; N/A; N/ABackgroundIn object-oriented or acausal modelling, components of the model can be connected topologically, following the inherent structure of the physical system, and system equations can be formulated automatically. This technique allows individuals without a mathematics background to develop knowledge-based models and facilitates collaboration in multidisciplinary fields like biomedical engineering. This study conducts a preclinical evaluation of a ventricular assist device (VAD) in assisting advanced-stage heart failure patients in an acausal modelling environment.MethodsA comprehensive object-oriented model of the cardiovascular system with a VAD is developed in MATLAB/SIMSCAPE, and its hemodynamic behaviour is studied. An analytically derived pump model is calibrated for the experimental prototype of the Istanbul Heart VAD. Hemodynamics are produced under healthy, diseased, and assisted conditions. The study features a comprehensive collection of advanced-stage heart failure patients' data from the literature to identify parameters for disease modelling and to validate the resulting hemodynamics.ResultsRegurgitation, suction, and optimal speeds are identified, and trends in different hemodynamic parameters are observed for the simulated pathophysiological conditions. Using pertinent parameters in disease modelling allows for more accurate results compared to the traditional approach of arbitrary reduction in left ventricular contractility to model dilated cardiomyopathy.ConclusionThe current research provides a comprehensive and validated framework for the preclinical evaluation of cardiac assist devices. Due to its object-oriented nature, the featured model is readily modifiable for other cardiovascular diseases for studying the effect of pump operating conditions on hemodynamics and vice versa in silico and hybrid mock circulatory loops. The work also provides a potential teaching tool for understanding the pathophysiology of heart failure, diagnosis rationale, and degree of assist requirements.Publication Metadata only An efficient 2-party private function evaluation protocol based on half gates(Oxford Univ Press, 2019) Bingol, Muhammed Ali; Kiraz, Mehmet Sabir; Levi, Albert; N/A; Biçer, Osman; PhD Student; Graduate School of Sciences and Engineering; N/APrivate function evaluation (PFE) is a special case of secure multi-party computation (MPC), where the function to be computed is known by only one party. PFE is useful in several real-life applications where an algorithm or a function itself needs to remain secret for reasons such as protecting intellectual property or security classification level. In this paper, we focus on improving 2-party PFE based on symmetric cryptographic primitives. In this respect, we look back at the seminal PFE framework presented by Mohassel and Sadeghian at Eurocrypt'13. We show how to adapt and utilize the well-known half gates garbling technique (Zahur et al., Eurocrypt'15) to their constant-round 2-party PFE scheme. Compared to their scheme, our resulting optimization significantly improves the efficiency of both the underlying Oblivious Evaluation of Extended Permutation (OEP) and secure 2-party computation (2PC) protocols, and yields a more than 40% reduction in overall communication cost (the computation time is also slightly decreased and the number of rounds remains unchanged).Publication Open Access Analysis of a group purchasing organization under demand and price uncertainty(Springer, 2018) Department of Business Administration; Department of Industrial Engineering; Department of Business Administration; Department of Industrial Engineering; Tan, Barış; Karabağ, Oktay; Faculty Member; Resercher; College of Administrative Sciences and Economics; College of Engineering; 28600; N/ABased on an industrial case study, we present a stochastic model of a supply chain consisting of a set of buyers and suppliers and a group purchasing organization (GPO). The GPO combines orders from buyers in a two-period model. Demand and price in the second period are random. An advance selling opportunity is available to all suppliers and buyers in the first-period market. Buyers decide how much to buy through the GPO in the first period and how much to procure from the market at a lower or higher price in the second period. Suppliers determine the amount of capacity to sell through the GPO in the first period and to hold in reserve in order to meet demand in the second period. The GPO conducts a uniform-price reverse auction to select suppliers and decides on the price that will be offered to buyers to maximize its profit. By determining the optimal decisions of buyers, suppliers, and the GPO, we answer the following questions: Do suppliers and buyers benefit from working with a GPO? How do the uncertainty in demand, the share of GPO orders in the advance sales market, and the uncertainty in price influence the players' decisions and profits? What are the characteristics of an environment that would encourage suppliers and buyers to work with a GPO? We show that a GPO helps buyers and suppliers to mitigate demand and price risks effectively while collecting a premium by serving as an intermediary between them.