Research Outputs

Permanent URI for this communityhttps://hdl.handle.net/20.500.14288/2

Browse

Search Results

Now showing 1 - 10 of 246
  • Placeholder
    Publication
    ‘Anti-commutable’ local pre-Leibniz algebroids and admissible connections
    (Elsevier, 2023) Department of Physics; N/A; Dereli, Tekin; Doğan, Keremcan; Faculty Member; PhD Student; Department of Physics; College of Sciences; Graduate School of Sciences and Engineering; 201358; N/A
    The concept of algebroid is convenient as a basis for constructions of geometrical frameworks. For example, metric-affine and generalized geometries can be written on Lie and Courant algebroids, respectively. Furthermore, string theories might make use of many other algebroids such as metric algebroids, higher Courant algebroids, or conformal Courant algebroids. Working on the possibly most general algebroid structure, which generalizes many of the algebroids used in the literature, is fruitful as it creates a chance to study all of them at once. Local pre-Leibniz algebroids are such general ones in which metric-connection geometries are possible to construct. On the other hand, the existence of the 'locality operator', which is present for the left-Leibniz rule for the bracket, necessitates the modification of torsion and curvature operators in order to achieve tensorial quantities. In this paper, this modification of torsion and curvature is explained from the point of view that the modification is applied to the bracket instead. This leads one to consider 'anti-commutable' local pre-Leibniz algebroids which satisfy an anti-commutativity-like property defined with respect to a choice of an equivalence class of connections. These 'admissible' connections are claimed to be the necessary ones while working on a geometry of algebroids. This claim is due to the fact that one can prove many desirable properties and relations if one uses only admissible connections. For instance, for admissible connections, we prove the first and second Bianchi identities, Cartan structure equations, Cartan magic formula, the construction of Levi-Civita connections, the decomposition of connection in terms of torsion and non-metricity. These all are possible because the modified bracket becomes anti-symmetric for an admissible connection so that one can apply the machinery of almost-or pre-Lie algebroids. We investigate various algebroid structures from the literature and show that they admit admissible connections which are metric-compatible in some generalized sense. Moreover, we prove that local pre-Leibniz algebroids that are not anti-commutable cannot be equipped with a torsion-free, and in particular Levi-Civita, connection.
  • Placeholder
    Publication
    10-NJ multipass-cavity femtosecond CR3+: LiCAF laser pumped by low-power single-mode diodes
    (Optical Society of America, 2009) Kärtner, Franz X.; Fujimoto, James G.; Demirbaş, Ümit; Department of Physics; Sennaroğlu, Alphan; Faculty Member; Department of Physics; College of Sciences; 23851
    We report on the generation of 9.9-nJ, 95-fs pulses at a repetition rate of 9.58 MHz from a multipass-cavity Cr3+:LiCAF laser pumped by single-mode diodes with a total absorbed pump power of only 540 mW.
  • Thumbnail Image
    PublicationOpen Access
    3D printing of elastomeric bioinspired complex adhesive microstructures
    (Wiley, 2021) Dayan, Cem Balda; Chun, Sungwoo; Krishna Subbaiah, Nagaraj; Drotlef, Dirk Michael; Akolpoğlu, Mükrime Birgül; Department of Mechanical Engineering; Sitti, Metin; Faculty Member; Department of Mechanical Engineering; College of Engineering; School of Medicine; 297104
    Bioinspired elastomeric structural adhesives can provide reversible and controllable adhesion on dry/wet and synthetic/biological surfaces for a broad range of commercial applications. Shape complexity and performance of the existing structural adhesives are limited by the used specific fabrication technique, such as molding. To overcome these limitations by proposing complex 3D microstructured adhesive designs, a 3D elastomeric microstructure fabrication approach is implemented using two-photon-polymerization-based 3D printing. A custom aliphatic urethane-acrylate-based elastomer is used as the 3D printing material. Two designs are demonstrated with two combined biological inspirations to show the advanced capabilities enabled by the proposed fabrication approach and custom elastomer. The first design focuses on springtail- and gecko-inspired hybrid microfiber adhesive, which has the multifunctionalities of side-surface liquid super-repellency, top-surface liquid super-repellency, and strong reversible adhesion features in a single fiber array. The second design primarily centers on octopus- and gecko-inspired hybrid adhesive, which exhibits the benefits of both octopus- and gecko-inspired microstructured adhesives for strong reversible adhesion on both wet and dry surfaces, such as skin. This fabrication approach could be used to produce many other 3D complex elastomeric structural adhesives for future real-world applications.
  • Placeholder
    Publication
    80-NJ multipass-cavity chirped-pulse Cr4+: forsterite laser
    (Optical Society of America, 2010) Fujimoto, James G.; Department of Physics; Sennaroğlu, Alphan; Çankaya, Hüseyin; Faculty Member; Researcher; Department of Physics; College of Sciences; Graduate School of Sciences and Engineering; 23851; N/A
    By using 8.5 W of incident pump power, we obtained 80-nJ, 5.5-ps pulses at 1260 nm with a spectral width of 17 nm from a multipass-cavity, chirped-pulse Cr4+:forsterite laser operated at 4.9-MHz repetition rate. © 2010 Optical Society of America.
  • Thumbnail Image
    PublicationOpen Access
    A broken gauge approach to gravitational mass and charge
    (Springer, 2002) Tucker, R. W.; Department of Physics; Dereli, Tekin; Faculty Member; Department of Physics; College of Sciences; 201358
    We argue that a spontaneous breakdown of local Weyl invariance offers a mechanism in which gravitational interactions contribute to the generation of particle masses and their electric charge. The theory is formulated in terms of a spacetime geometry whose natural connection has both dynamic torsion and non-metricity. Its structure illuminates the role of dynamic scales used to determine measurable aspects of particle interactions and it predicts an additional neutral vector boson with electroweak properties. © SISSA/ISAS 2002.
  • Thumbnail Image
    PublicationOpen Access
    A critical approach to the biocompatibility testing of NiTi orthodontic archwires
    (Vibgyor Online Publishers, 2016) Şahbazoğlu, D.; Toker, S. M.; Saher, D.; Department of Mechanical Engineering; Canadinç, Demircan; Gümüş, Berkay; Uzer, Benay; Yıldırım, Cansu; Polat-Altıntaş, Sevgi; Faculty Member; Department of Mechanical Engineering; College of Engineering; 23433; N/A; N/A; N/A; N/A
    The biocompatibility of Nickel-Titanium (NiTi) archwires was investigated by simulating actual contact state of archwires around brackets, which enabled incorporation of realistic mechanical conditions into ex situ experiments. Specifically, archwires (undeformed, and bound to brackets on acrylic dental molds) were statically immersed in artificial saliva (AS) for 31 days. Following the immersion, the archwires and the immersion solutions were analyzed with the aid of variouselectron-optical techniques, and it was observed that carbon-rich corrosion products formed on both archwire sets upon immersion. The corrosion products preferentially formed at the archwire–bracket contact zones, which is promoted by the high energy of these regions and the micro-cracks brought about by stress assisted corrosion. Moreover, it is suggested that these corrosion products prevented significant Ni or Ti ion release by blocking the micro-cracks, which, otherwise, would have led to enhanced ion release during immersion. The current findings demonstrate the need for incorporating both realistic chemical and mechanical conditions into the ex situ biocompatibility experiments of orthodontic archwires, including the archwire-bracket contact.
  • Placeholder
    Publication
    A deep etching mechanism for trench-bridging silicon nanowires
    (Iop Publishing Ltd, 2016) Wollschlaeger, Nicole; Österle, Werner; Leblebici, Yusuf; N/A; Department of Mechanical Engineering; Taşdemir, Zuhal; Alaca, Burhanettin Erdem; PhD Student; Faculty Member; Department of Mechanical Engineering; Koç University Surface Science and Technology Center (KUYTAM) / Koç Üniversitesi Yüzey Teknolojileri Araştırmaları Merkezi (KUYTAM); Graduate School of Sciences and Engineering; College of Engineering; N/A; 115108
    Introducing a single silicon nanowire with a known orientation and dimensions to a specific layout location constitutes a major challenge. The challenge becomes even more formidable, if one chooses to realize the task in a monolithic fashion with an extreme topography, a characteristic of microsystems. The need for such a monolithic integration is fueled by the recent surge in the use of silicon nanowires as functional building blocks in various electromechanical and optoelectronic applications. This challenge is addressed in this work by introducing a topdown, silicon-on-insulator technology. The technology provides a pathway for obtaining wellcontrolled silicon nanowires along with the surrounding microscale features up to a three-orderof-magnitude scale difference. A two-step etching process is developed, where the first shallow etch defines a nanoscale protrusion on the wafer surface. After applying a conformal protection on the protrusion, a deep etch step is carried out forming the surrounding microscale features. A minimum nanowire cross-section of 35 nm by 168 nm is demonstrated in the presence of an etch depth of 10 mu m. Nanowire cross-sectional features are characterized via transmission electron microscopy and linked to specific process steps. The technology allows control on all dimensional aspects along with the exact location and orientation of the silicon nanowire. The adoption of the technology in the fabrication of micro and nanosystems can potentially lead to a significant reduction in process complexity by facilitating direct access to the nanowire during surface processes such as contact formation and doping.
  • Placeholder
    Publication
    A deformation-based approach to tuning of magnetic micromechanical resonators
    (2018) Yalçınkaya, Arda D.; Department of Mechanical Engineering; N/A; Department of Mechanical Engineering; Biçer, Mahmut; Esfahani, Mohammad Nasr; Alaca, Burhanettin Erdem; Researcher; PhD Student; Faculty Member; Department of Mechanical Engineering; Koç University Surface Science and Technology Center (KUYTAM) / Koç Üniversitesi Yüzey Teknolojileri Araştırmaları Merkezi (KUYTAM); College of Engineering; Graduate School of Sciences and Engineering; College of Engineering; N/A; N/A; 115108
    Resonance frequency tuning in magnetic micromechanical resonators remains a primary field of study for frequency reference applications. The use of magnetic micromechanical resonators for innovative timing, oscillator and sensing applications necessitates a platform for the precise control of the resonance frequency. The present work addresses a deformation based technique for tuning the resonance frequency of nickel micromechanical resonators. Frequency response is measured through magnetic actuation and optical readout. The tuning approach is based on a combination of flexural deformation and uniaxial strain. The bending deformation is achieved by using a DC current through the microbeam. This magnetomotive mechanism reduces the resonance frequency by about 13% for a maximum DC current of 80 mA. A substrate bending method is used for applying uniaxial strain to increase the resonance frequency by about 8%. A bidirectional frequency modulation is thus demonstrated by utilizing both deformation techniques. The interpretation of results is carried out by finite element analysis and electromechanical analogy in an equivalent circuit. Using deformation techniques, this study provides a rigorous approach to control the resonance frequency of magnetic micromechanical resonators.
  • Thumbnail Image
    PublicationOpen Access
    A diversity combination model incorporating an inward bias for interaural time-level difference cue integration in sound lateralization
    (Multidisciplinary Digital Publishing Institute (MDPI), 2020) N/A; Department of Computer Engineering; Mojtahedi, Sina; Erzin, Engin; Ungan, Pekcan; Faculty Member; Faculty Member; Department of Computer Engineering; Graduate School of Sciences and Engineering; College of Engineering; School of Medicine; N/A; 34503; N/A
    A sound source with non-zero azimuth leads to interaural time level differences (ITD and ILD). Studies on hearing system imply that these cues are encoded in different parts of the brain, but combined to produce a single lateralization percept as evidenced by experiments indicating trading between them. According to the duplex theory of sound lateralization, ITD and ILD play a more significant role in low-frequency and high-frequency stimulations, respectively. In this study, ITD and ILD, which were extracted from a generic head-related transfer functions, were imposed on a complex sound consisting of two low- and seven high-frequency tones. Two-alternative forced-choice behavioral tests were employed to assess the accuracy in identifying a change in lateralization. Based on a diversity combination model and using the error rate data obtained from the tests, the weights of the ITD and ILD cues in their integration were determined by incorporating a bias observed for inward shifts. The weights of the two cues were found to change with the azimuth of the sound source. While the ILD appears to be the optimal cue for the azimuths near the midline, the ITD and ILD weights turn to be balanced for the azimuths far from the midline.
  • Placeholder
    Publication
    A Hamiltonian formulation of the Pais-Uhlenbeck oscillator that yields a stable and unitary quantum system
    (Elsevier Science Bv, 2010) NA; Department of Mathematics; Mostafazadeh, Ali; Faculty Member; Department of Mathematics; College of Sciences; 105131
    We offer a new Hamiltonian formulation of the classical Pais-Uhlenbeck oscillator and consider its canonical quantization. We show that for the non-degenerate case where the frequencies differ, the quantum Hamiltonian operator is a Hermitian operator with a positive spectrum, i.e., the quantum system is both stable and unitary. Furthermore it yields the classical Pais-Uhlenbeck oscillator in the classical limit. A consistent description of the degenerate case based on a Hamiltonian that is quadratic in momenta requires its analytic continuation into a complex Hamiltonian system possessing a generalized PT-symmetry (an involutive antilinear symmetry). We devise a real description of this complex system, derive an integral of motion for it, and explore its quantization.