Organizational Unit:
Department of Chemistry

Loading...
OrgUnit Logo

Date established

City

Country

ID

Is Parent Of

Is Child Of

ROR Identifier

Description

Publication Search Results

Now showing 1 - 10 of 870
  • Thumbnail Image
    PublicationOpen Access
    Emergence of near-infrared photoluminescence via ZnS shell growth on the AgBiS2 nanocrystals
    (American Chemical Society, 2024) Department of Chemistry; Department of Electrical and Electronics Engineering; Önal, Asım; Kaya, Tarık Safa; Metin, Önder; Nizamoğlu, Sedat; Department of Chemistry; Department of Electrical and Electronics Engineering; Graduate School of Sciences and Engineering; College of Sciences; College of Engineering
    AgBiS2 nanocrystals (NCs), composed of nontoxic, earth-abundant materials and exhibiting an exceptionally high absorption coefficient from visible to near-infrared (>105 cm(-1)), hold promise for photovoltaics but have lack of photoluminescence (PL) due to intrinsic nonradiative recombination and challenging shell growth. In this study, we reported a facile wet-chemical approach for the epitaxial growth of ZnS shell on AgBiS2 NCs, which triggered the observation of PL emission in the near-infrared (764 nm). Since high quality of the core is critical for epitaxial shell growth, we first obtained rock-salt structured AgBiS2 NCs with high crystallinity, nearly spherical shape and monodisperse size distribution (<6%) via a dual-ligand approach reacting Ag-Bi oleate with elemental sulfur in oleylamine. Next, a zincblende ZnS shell with a low-lattice mismatch of 4.9% was grown on as-prepared AgBiS2 NCs via a highly reactive zinc (Zn(acac)(2)) precursor that led to a higher photoluminescence quantum yield (PLQY) of 15.3%, in comparison with a relatively low reactivity precursor (Zn(ac)(2)) resulting in reduced PLQY. The emission from AgBiS2 NCs with ultrastrong absorption, facilitated by shell growth, can open up new possibilities in lighting, display, and bioimaging.
  • Placeholder
    Publication
    A mixed basis with off-center Gaussian functions for the calculation of the potential energy surfaces for pi-stacking interactions: dimers of benzene and planar C-6
    (Springer, 2015) Department of Chemistry; Yurtsever, İsmail Ersin; Faculty Member; Department of Chemistry; College of Sciences; 7129
    A practical mixed basis set was developed to facilitate accurate calculations of potential energy surfaces for pi-stacking interactions. Correlation consistent basis sets (cc-PVXZ) were augmented by p-type Gaussian functions placed above and below the planes of C-6 moieties. Moller-Plesset (MP2, SCS-MP2) and coupled cluster [CCSD(T)] calculations show that such generated basis sets provide an accurate description of p-stacking systems with favorable computation times compared to the standard augmented basis sets. The addition of these off-center functions eliminates the linear dependence of the augmented basis sets, which is one of the most encountered numerical problems during calculation of the oligomers of polyaromatic hydrocarbons (PAH). In this work, we present a comparative study of the general characteristics of the potential energy surfaces for the parallel stacked and T-shape conformations of benzene and planar C6 clusters, using a combination of cc-PVXZ and our optimized functions. We discuss properties, such as the depth and curvature of the potential functions, short and long distance behavior, and the frictional forces between two model monomers.
  • Placeholder
    Publication
    Rattling in the cage: Ions as probes of sub-picosecond water network dynamics
    (American Chemical Society (ACS), 2009) Schmidt, Diedrich A.; Funkner, Stefan; Born, Benjamin P.; Gnanasekaran, Ramachandran; Schwaab, Gerhard W.; Leitner, David M.; Havenith, Martina; Department of Chemistry; Birer, Özgür; Faculty Member; Department of Chemistry; College of Sciences; N/A
    We present terahertz (THz) measurements of salt solutions that shed new light on the controversy over whether salts act as kosmotropes (structure makers) or chaotropes (structure breakers), which enhance or reduce the solvent order, respectively. We have carried out precise measurements of the concentrationdependent THz absorption coefficient of 15 solvated alkali halide salts around 85 cm-1 (2.5 THz). In addition, we recorded overview spectra between 30 and 300 cm-1 using a THz Fourier transform spectrometer for six alkali halides. For all solutions we found a linear increase of THz absorption compared to pure water (THz excess) with increasing solute concentration. These results suggest that the ions may be treated as simple defects in an H-bond network. They therefore cannot be characterized as either kosmotropes or chaotropes. Below 200 cm-1, the observed THz excess of all salts can be described by a linear superposition of the water absorption and an additional absorption that is attributed to a rattling motion of the ions within the water network. By providing a comprehensive set of data for different salt solutions, we find that the solutions can all be very well described by a model that includes damped harmonic oscillations of the anions and cations within the water network. We find this model predicts the main features of THz spectra for a variety of salt solutions. The assumption of the existence of these ion rattling motions on sub-picosecond time scales is supported by THz Fourier transform spectroscopy of six alkali halides. Above 200 cm-1 the excess is interpreted in terms of a change in the wing of the water network librational mode. Accompanying molecular dynamics simulations using the TIP3P water model support our conclusion and show that the fast sub-picosecond motions of the ions and their surroundings are almost decoupled. These findings provide a complete description of the solute-induced changes in the THz solvation dynamics for the investigated salts. Our results show that THz spectroscopy is a powerful experimental tool to establish a new view on the contributions of anions and cations to the structuring of water. © 2009 American Chemical Society.
  • Placeholder
    Publication
    The effects of histamine receptor antagonists and RhoA inhibitor on histamine-induced blood-brain barrier disruption
    (Wiley, 2022) Polat, Fidan Şeker; Yılmaz, Canan Uğur; N/A; N/A; N/A; N/A; N/A; N/A; N/A; Department of Chemistry; Akcan, Uğur; Temizyürek, Arzu; Özen, Deniz; Demirci, Gözde; Akbulak, İrem; Üzbe, Ayşe Selin; Üzbe, Pakize Pelin; Acar, Havva Funda Yağcı; Kaya, Mehmet; Ahıshalı, Bülent; PhD Student; Other; Other; Master Student; Master Student; Other; Other; Faculty Member; Faculty Member; Faculty Member; Department of Chemistry; Graduate School of Health Sciences; School of Medicine; N/A; Graduate School of Sciences and Engineering; N/A; N/A; N/A; College of Sciences; School of Medicine; School of Medicine; Koç University Hospital; N/A; 357912; N/A; N/A; N/A; N/A; N/A; 178902; 10486; 9509
  • Placeholder
    Publication
    Antibacterial silicone-urea/organoclay nanocomposites
    (Springer, 2009) Department of Chemistry; N/A; N/A; Department of Chemistry; Yılgör, Emel; Nugay, Işık Işıl; Bakan, Murat; Yılgör, İskender; Researcher; Undergraduate Student; Undergraduate Student; Faculty Member; Department of Chemistry; College of Sciences; College of Engineering; College of Engineering; College of Sciences; N/A; N/A; N/A; 24181
    Montmorillonite modified with distearyldimethyl ammonium chloride (C18-QAC) (Nanofil-15) (NF15) was incorporated into polydimethylsiloxane-urea (silicone-urea, PSU) copolymers. PSU was obtained by the reaction of equimolar amounts of aminopropyl terminated polydimethylsiloxane (PDMS) oligomer (= 3,200 g/mol) and bis(4-isocyanatohexyl) methane (HMDI). A series of PSU/NF15 nanocomposites were prepared by solution blending with organoclay loadings ranging from 0.80 to 9.60% by weight, corresponding to 0.30 to 3.60% C18-QAC. Colloidal dispersions of organophilic clay (NF15) in isopropanol were mixed with the PSU solution in isopropanol and were subjected to ultrasonic treatment. Composite films were obtained by solution casting. FTIR spectroscopy confirmed that the organoclay mainly interacted with the urea groups but not with PDMS. XRD analysis showed that nanocomposites containing up to 6.40% by weight of organoclay had fully exfoliated silicate layers in the polymer matrix, whereas 9.60% loading had an intercalated structure. Physicochemical properties of nanocomposites were determined. PSU/NF15 nanocomposites displayed excellent long-term antibacterial properties against E. coli.
  • Placeholder
    Publication
    Motion of single terrylene molecules in confined channels of poly(butadiene)-poly(ethylene oxide) diblock copolymer
    (Amer Chemical Soc, 2009) N/A; Department of Physics; Department of Chemistry; Yorulmaz, Mustafa; Kiraz, Alper; Demirel, Adem Levent; Master Student; Faculty Member; Faculty Member; Department of Physics; Department of Chemistry; Graduate School of Sciences and Engineering; College of Sciences; College of Sciences; N/A; 22542; 6568
    The motion of terrylene probe molecules in confined PB channels of an asymmetric PB-PEO diblock copolymer has been investigated by single molecule tracking. The one-dimensional diffusion coefficients were found to be significantly smaller and had a narrower distribution compared to two-dimensional diffusion coefficients in PB. The trajectories of some single molecules showed unusual behavior of directed motion where mean square displacement had a parabolic dependence oil lag time. The likely origin of this behavior is discussed in terms of local variations in the PB channel width and the resulting change in the local density. The results show the effect of nonuniformities and heterogeneities in the channels on the motion of single molecules and demonstrate the sensitivity of single molecule tracking in characterizing self-assembled block copolymer morphologies.
  • Placeholder
    Publication
    Effect of ambient and cryogenic milling on the microstructure and properties of tungsten matrix composites fabricated by activated sintering
    (Sivas Cumhuriyet Üniversitesi, 2019) Ağaoğulları, Duygu; Öveçoğlu, M. Lütfi; Department of Chemistry; Department of Chemistry; Balcı, Özge; Somer, Mehmet Suat; Researcher; Faculty Member; Department of Chemistry; College of Sciences; College of Sciences; 295531; 178882
    Tungsten matrix composites reinforced with TiB2 and Y2O3 particles were fabricated by milling under ambient/cryogenic conditions and Ni activated sintering. Powder blends constituting the W - 1 wt. % Ni - 2 wt. % TiB2 - 1 wt. % Y2O3 composition were mechanically milled for 12 h under ambient condition or cryomilled for 10 min or sequentially milled under ambient and cryogenic conditions. Milling was carried out in a high-energy ball mill under ambient condition whereas cryogenic milling was conducted in externally circulated liquid nitrogen. Milled powders were compacted using a hydraulic press and the pellets were sintered at 1400°C for 1 h under Ar / H2 gas flowing conditions. The effects of different milling types on the microstructural and mechanical properties of the sintered composites were investigated. After sintering, in addition to dominant W phase, small amounts of WB and NiW phases were detected in all sintered samples. The application of cryomilling after milling at ambient condition provided the disappearance of the clustered TiB2 and Y2O3 particles in the sintered sample: They were located at the grain boundaries of W1Ni matrix and homogeneously distributed through the microstructure. Sequentially milled and sintered composite had the highest relative density (95.77 %) and the highest microhardness (7.23 GPa) values among the samples. Nanoindentation tests showed that there was an improvement in the hardness and elastic modulus of W matrix phase, which yielded the values of 8.9 and 373.7 GPa, respectively. / Özet: Bu çalışmada, Ni ile aktive edilerek sinterlenen tungsten esaslı matrisin TiB2 ve Y2O3 partikülleri ile takviye edilmesiyle, tungsten esaslı kompozit malzeme üretimi gerçekleştirilmiştir. W - % 1 ağ. Ni - % 2 ağ. TiB2 - % 1 ağ. Y2O3 kompozisyonundan oluşan toz harmanları, normal koşullarda 12 sa mekanik olarak öğütülerek ya da 10 dk kriyojenik ortamda öğütülerek ya da normal ve kriyojenik şartlarda ardışık olarak öğütülerek hazırlanmıştır. Normal şartlarda öğütme yüksek enerjili bir değirmende uygulanırken; kriyojenik şartlarda öğütme sıvı azot ile dışarıdan çevrelenen bir sistemde yapılmıştır. Öğütülmüş tozlar hidrolik pres kullanılarak preslenmiş ve pekiştirilen bünyeler Ar/H2 gazaltı şartlarında 1400°C’de 1 sa sinterlenmiştir. Farklı öğütme koşullarının sinterlenen kompozit malzemelerin mikroyapısı ve özellikleri üzerindeki etkisi incelenmiştir. Sinterlenme sonrasında, baskın W fazına ek olarak düşük mikarda WB ve NiW fazları oluşumu gözlemlenmiştir. Normal şartlarda öğütme sonrası uygulanan kriyojenik öğütme, sinter malzemelerin mikroyapısındaki TiB2 ve Y2O3 partiküllerin topaklanmasının yok olmasına neden olmuştur: Partiküllerin W1Ni matrisinin tane sınırlarında ve homojen olarak mikroyapıda dağılması sağlanmıştır. Ardışık olarak öğütülmüş ve sinterlenmiş kompozitler, numuneler arasında en yüksek rölatif yoğunluk (% 95,77) ve mikrosertlik değerlerini (7,23 GPa) sunmuştur. Nano-indentasyon testleri sayesinde, W matris fazının sertlik ve elastisite modül değerlerinin sırasıyla 8,9 ve 373,7 GPa değerlerine kadar iyileştirildiği kanıtlanmıştır.
  • Placeholder
    Publication
    High temperature thermoelectric properties of the type-I clathrate BA(8)NI(X)GE46(-X-Y)square(Y)
    (Institute of Physics (IOP) Publishing, 2014) Candolfi, Christophe; Örmeci, Alim; Baitinger, Michael; Oeschler, Niels; Steglich, Frank; Grin, Yu; Department of Chemistry; Aydemir, Umut; Faculty Member; Department of Chemistry; College of Sciences; 58403
    Polycrystalline samples of the type-I clathrate Ba8NixGe46-x-y square(y) were synthesized for 0.2 <= x <= 3.5 by melt quenching and for 3.5 < x <= 6.0 by melting with subsequent annealing at 700 degrees C. The maximum Ni content in the clathrate framework at this temperature was found to be x approximate to 4.2 atoms per unit cell. Thermoelectric and thermodynamic properties of the type-I clathrate were investigated from 300 to 700 K by means of electrical resistivity, thermopower, thermal conductivity and specific heat measurements. As the Ni content increases, the electronic properties gradually evolve from a metallic character (x < 3.5) towards a highly doped semiconducting state (x >= 3.5). Below x approximate to 4.0 transport is dominated by electrons, while further addition of Ni (x approximate to 4.2) switches the electrical conduction to p-type. Maximum value of the dimensionless thermoelectric figure of merit ZT approximate to 0.2 was achieved at 500K and 650K for x approximate to 2.0 and x approximate to 3.8, respectively.
  • Placeholder
    Publication
    Synthesis of upconverting nanosheets derived from Er-Yb and Tm-Yb Co-doped layered perovskites and their layer-by-layer assembled films
    (Elsevier, 2022) Gunay, Bensu; Suer, Ozge; Doger, Hilal; Arslan, Ozlem; Saglam, Ozge; Department of Chemistry; Ünal, Uğur; Faculty Member; Department of Chemistry; Koç University Surface Science and Technology Center (KUYTAM) / Koç Üniversitesi Yüzey Teknolojileri Araştırmaları Merkezi (KUYTAM); College of Sciences; 42079
    Here, we investigated the structure and upconversion (UC) properties of new-type of single oxide nanosheets, derived from the Er3+/Yb3+ and Tm3+/Yb3+ co-doped Ruddlesden-Popper type layered perovskites, and their layer-by-layer (LBL) self-assembled nanofilms. The single oxide nanosheets, obtained by exfoliation of the proton-exchanged K2La2Ti3O10, had the thickness in the range of 2-3 nm indicating good consistency with the theoretical thickness and lateral size from 500 nm up to 2 mu m. Er3+/Yb3+, Tm3+/Yb3+ and Tm3+/Er3+co-doped nanosheets were used as building blocks of the multilayer films deposited by layer-by-layer procedure. The LBL films composed of 2.5 % Er3+ + 5 % Yb3+, 2.5 % Tm3+ + 20 % Yb3+, 2.5 % Tm3+ + 20 % Er3+ after 60 sequences have shown a white emission confirmed by the CIE chromaticity diagram. The possible UC energy transfer of LBL films fabricated after 30 sequences using the nanosheets derived from the 2.5 % Er3+ + 5 % Yb3+ co-doped layered perovskites was also suggested. The number of photons participating in the UC process was confirmed as two-photon for both green and red UC emissions due to the F-4(9/2) -> I-4(15/2) and H-2(11/2), S-4(3/2) -> I-4(15/2) transitions, respectively.
  • Placeholder
    Publication
    Nanoparticle based induction heating at low magnitudes of magnetic field strengths for breast cancer therapy
    (Elsevier, 2019) Zuvin, Merve; Koçak, Muhammed; Akkoç, Yunus; Kutlu, Özlem; Gözüaçık, Devrim; Koşar, Ali; N/A; Department of Chemistry; Ünal, Özlem; Acar, Havva Funda Yağcı; PhD Student; Faculty Member; Department of Chemistry; Graduate School of Sciences and Engineering; College of Sciences; N/A; 178902
    Magnetic hyperthermia has received much attention during the last decade due to its implementation in cancer treatment. Recently, functionalized superparamagnetic iron oxide nanoparticles (SPION) emerged as a strong alternative adjuvant treatment approach, which complements conventional methods such as chemotherapy. In this study, we demonstrate the anticancer effect of Poly(acrylic acid)-coated, anti-HER2-tagged SPIONs on breast cancer cells using a low magnetic field strength of 0.8 kAm(-1), which is significantly lower compared to the literature, with a frequency of 400 kHz. Specificity was achieved via anti-HER2 antibody attachment to nanoparticles. HER2-positive SKBR3 and MDA-MB-453 cell lines internalized the nanoparticles successfully. These nanoparticles, which were not toxic to these cell lines, led to a prominent decrease in cell proliferation and survival in MDA-MB-453 cells when subjected to hyperthermia. Therefore, the hyperthermia-targeted SPION approach could be developed as a potential cancer treatment approach against breast cancer and possible other cancer types.