Researcher: Mostafazadeh, Aref
Name Variants
Mostafazadeh, Aref
Email Address
Birth Date
6 results
Search Results
Now showing 1 - 6 of 6
Publication Metadata only Optical fiber array based simultaneous parallel monitoring of resonant cantilever sensors in liquid(Elsevier, 2016) Yaralioglu, Goksen G.; Department of Electrical and Electronics Engineering; Mostafazadeh, Aref; Ürey, Hakan; Researcher; Faculty Member; Department of Electrical and Electronics Engineering; College of Engineering; N/A; 8579This paper reports a novel method for simultaneous resonance monitoring of MEMS cantilevers using phase based dynamic measurements without any electrical connections to the sensor array. MEMS cantilevers are made of electroplated nickel and actuated remotely with magnetic field using an electro-coil. To our knowledge this is the first demonstration of simultaneous parallel optical monitoring of dynamic mode micro-cantilever array in liquid environment. Illumination is generated using a laser source and a diffractive pattern generator, which provides 500 mu W laser power per channel. A compact fiber array based pick-up was built for optical readout. Its main advantages are easy customization to different size and pitch of sensor array, and good immunity to electrical noise and magnetic interference as the photo detectors are located away from the electro-coil. The resonant frequency of the cantilever is tracked with a custom multi-channel lock-in amplifier implemented in software. For demonstrating the stability and sensitivity of the system we performed measurements using glycerol solutions with different viscosities. Measured phase sensitivity was 0.9/1% of Glycerol/DI-water solution and the standard deviation of measured phase was 0.025 degrees. The resulting detection limit for Glycerol/DI-water solution was 280 ppm. The proposed method showed robust results with low laser power and very good noise immunity to interference signals and environmental vibrations. The sensor technology demonstrated here is very significant as it is scalable to larger arrays for simultaneous and real-time monitoring of multiple biological and chemical agents during fluid flow.Publication Metadata only Pulse energy optimization in multipass-cavity mode-locked femtosecond lasers(IEEE-Inst Electrical Electronics Engineers Inc, 2015) N/A; Department of Electrical and Electronics Engineering; N/A; Department of Physics; Mostafazadeh, Aref; Çankaya, Hüseyin; Sennaroğlu, Alphan; Researcher; Researcher; Faculty Member; Department of Electrical and Electronics Engineering; Department of Physics; College of Engineering; Graduate School of Sciences and Engineering; College of Sciences; N/A; N/A; 23851We describe a comprehensive model, which accounts for reflection and clipping losses of notched multipass-cavity (MPC) mode-locked lasers and determines the optimum q-preserving MPC configuration, which maximizes the output pulse energy for a given pump power. In order to make realistic predictions, an initial experimental MPC resonator with negligible clipping losses was built and its power performance was measured in order to determine the values of the fixed model parameters such as the round-trip loss of the short cavity and reflection coefficient of the MPC mirrors. Then, by using these parameters and by taking into account all possible reflection and clipping loss mechanisms, the output pulse energy for various q-preserving configurations was calculated. The simulation results indicated that, a mode-locked Ti3+ : Sapphire laser based on the optimum MPC configuration should produce 30 nJ of pulse energy with a 3% output coupler at the pump power of 2 W. The experimental setup constructed at the optimum MPC configuration generated nearly transform-limited 74 fs pulses with 33 nJ of output pulse energy, in very good agreement with the model predictions. We believe that the model and the experimental procedure described in this paper should prove very useful in the practical design and optimization of energy-efficient MPC mode-locked lasers.Publication Metadata only LoC sensor array platform for real-time coagulation measurements(Institute of Electrical and Electronics Engineers (IEEE), 2014) Yaralıoğlu, Göksenin G.; N/A; Department of Electrical and Electronics Engineering; Department of Mechanical Engineering; Department of Electrical and Electronics Engineering; Department of Electrical and Electronics Engineering; Department of Electrical and Electronics Engineering; Çakmak, Onur; Kılınç, Necmettin; Ermek, Erhan; Mostafazadeh, Aref; Elbüken, Çağlar; Ürey, Hakan; PhD Student; Researcher; Other; Researcher; Researcher; Faculty Member; Department of Mechanical Engineering; Department of Electrical and Electronics Engineering; Graduate School of Sciences and Engineering; College of Engineering; College of Sciences; College of Engineering; College of Engineering; College of Engineering; N/A; 59959; N/A; N/A; N/A; 8579This paper reports a MEMS-based sensor array enabling multiple clot-time tests in one disposable microfluidic cartridge using plasma. The versatile LoC (Lab-on-Chip) platform technology is demonstrated here for real-time coagulation tests (activated Partial Thrompoblastin Time (aPTT) and Prothrombin Time (PT)). The system has a reader unit and a disposable cartridge. The reader has no electrical connections to the cartridge, which consists of multiple microfluidic channels and MEMS microcantilevers placed in each channel. Microcantilevers are made of electro-plated nickel and actuated remotely using an external electro-coil. The read-out is also conducted remotely by a laser and the phase of the MEMS oscillator is monitored real-time. The system is capable of monitoring coagulation time with a precision estimated at 0.1sec.Publication Metadata only Beam forming for a laser based auto-stereoscopic multi-viewer display(Digest, 2011) Baghsiahi, Hadi; Selviah, David R.; Willman, Eero; Fernández, Anibal; Day, Sally E.; Surman, Phil A.; N/A; N/A; Department of Electrical and Electronics Engineering; N/A; Department of Electrical and Electronics Engineering; Department of Electrical and Electronics Engineering; Akşit, Kaan; Ölçer, Selim; Mostafazadeh, Aref; Erden, Erdem; Chellappan, Kishore Velichappattu; Ürey, Hakan; PhD Student; Other; Researcher; Master Student; Researcher; Faculty Member; Department of Electrical and Electronics Engineering; Graduate School of Sciences and Engineering; College of Engineering; N/A; N/A; N/A; College of Engineering; N/A; N/A; N/A; N/A; N/A; 8579An auto-stereoscopic back projection display using a RGB multi-emitter laser illumination source and micro-optics to provide a wider view is described. The laser optical properties and the speckle due to the optical system configuration and its diffusers are characterised.Publication Metadata only Microcantilever based disposable viscosity sensor for serum and blood plasma measurements(Academic Press Inc Elsevier Science, 2013) N/A; Department of Mechanical Engineering; Department of Mechanical Engineering; Department of Electrical and Electronics Engineering; Department of Molecular Biology and Genetics; Department of Mechanical Engineering; Department of Chemical and Biological Engineering; Çakmak, Onur; Elbüken, Çağlar; Ermek, Erhan; Mostafazadeh, Aref; Barış, İbrahim; Alaca, Burhanettin Erdem; Kavaklı, İbrahim Halil; Ürey, Hakan; PhD Student; Researcher; Faculty Member; Researcher; Teaching Faculty; Faculty Member; Faculty Member; Faculty Member; Department of Electrical and Electronics Engineering; Department of Molecular Biology and Genetics; Department of Mechanical Engineering; Department of Chemical and Biological Engineering; Graduate School of Sciences and Engineering; College of Engineering; College of Engineering; Graduate School of Sciences and Engineering; College of Sciences; College of Engineering; College of Engineering; N/A; N/A; N/A; N/A; 111629; 115108; 40319; 8579This paper proposes a novel method for measuring blood plasma and serum viscosity with a microcantilever-based MEMS sensor. MEMS cantilevers are made of electroplated nickel and actuated remotely with magnetic field using an electro-coil. Real-time monitoring of cantilever resonant frequency is performed remotely using diffraction gratings fabricated at the tip of the dynamic cantilevers. Only few nanometer cantilever deflection is sufficient due to interferometric sensitivity of the readout. The resonant frequency of the cantilever is tracked with a phase lock loop (PLL) control circuit. The viscosities of liquid samples are obtained through the measurement of the cantilever's frequency change with respect to a reference measurement taken within a liquid of known viscosity. We performed measurements with glycerol solutions at different temperatures and validated the repeatability of the system by comparing with a reference commercial viscometer. Experimental results are compared with the theoretical predictions based on Sader's theory and agreed reasonably well. Afterwards viscosities of different Fetal Bovine Serum and Bovine Serum Albumin mixtures are measured both at 23 degrees C and 37 degrees C, body temperature. Finally the viscosities of human blood plasma samples taken from healthy donors are measured. The proposed method is capable of measuring viscosities from 0.86 cP to 3.02 cP, which covers human blood plasma viscosity range, with a resolution better than 0.04 cP. The sample volume requirement is less than 150 mu l and can be reduced significantly with optimized cartridge design. Both the actuation and sensing are carried out remotely, which allows for disposable sensor cartridges. (C) 2013 Published by Elsevier Inc.Publication Metadata only 48.4: Beam forming for a laser based auto-stereoscopic multi-viewer display(Blackwell Publishing Ltd, 2011) Baghsiahi, Hadi; Selviah, David R.; Willman, Eero; Fernández, Anibal; Day, Sally E.; Surman, Phil A.; N/A; Department of Electrical and Electronics Engineering; N/A; N/A; N/A; Department of Electrical and Electronics Engineering; Akşit, Kaan; Ölçer, Selim; Mostafazadeh, Aref; Erden, Erdem; Chellappan, Kishore Velichappattu; Ürey, Hakan; PhD Student; Other; N/A; Other; N/A; Faculty Member; Department of Electrical and Electronics Engineering; Graduate School of Sciences and Engineering; College of Engineering; N/A; N/A; N/A; College of Engineering; N/A; N/A; N/A; N/A; N/A; 8579An auto-stereoscopic back projection display using a RGB multiemitter laser illumination source and micro-optics to provide a wider view is described. The laser optical properties and the speckle due to the optical system configuration and its diffusers are characterised. © 2011 SID.